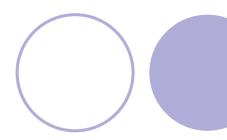
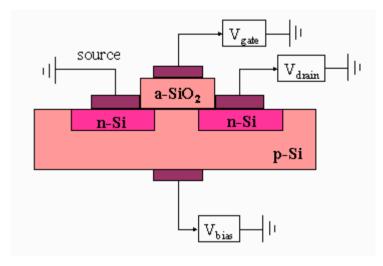

Effects of NH₃ as a Catalyst on the Metalorganic Chemical Vapor Deposition of Al₂O₃



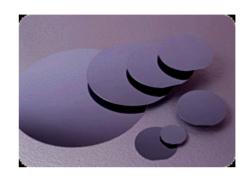
Final Presentation for REU program August 3rd, 2006


Ashlynne Rhoderick
University of South Carolina
Department of Chemical Engineering

Advisor: Dr. Christos Takoudis
University Of Illinois-Chicago
Department of Chemical Engineering

Motivation for Research

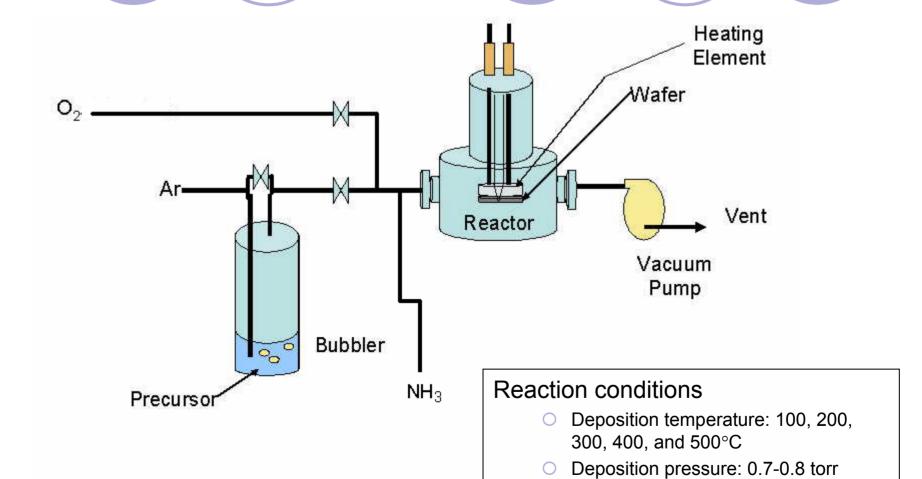
- Need for increased circuit density
 - Fitting more transistors on each wafer
- Physical limit of SiO₂
 - High leakage current
 - Reliability
 - Boron penetration
- Finding a new dielectric
 - \circ SiO₂ κ = 3.9
 - Need a higher κ dielectric


- $C = \kappa \epsilon_0 A/t$
 - C- capacitance
 - κ- dielectric coefficient (or relative permittivity)
 - $ε_0$ permittivity of free space (8.85*10⁻³ fF/μm)
 - A- area of capacitor
 - t- thickness of the dielectric

Why Al₂O₃ as a possible dielectric?

- Positive characteristics
 - \circ $\kappa=9$
 - Thermodynamically stable in contact with Si
 - Very stable, robust
 - O High band gap (9 eV)
 - It can combined with other high k dielectric material
- Experiment with NH₃
 - O Hope that it will
 - Increase the deposition rate of Al₂O₃
 - Decrease deposition temperature
 - Decrease amount of impurities in film

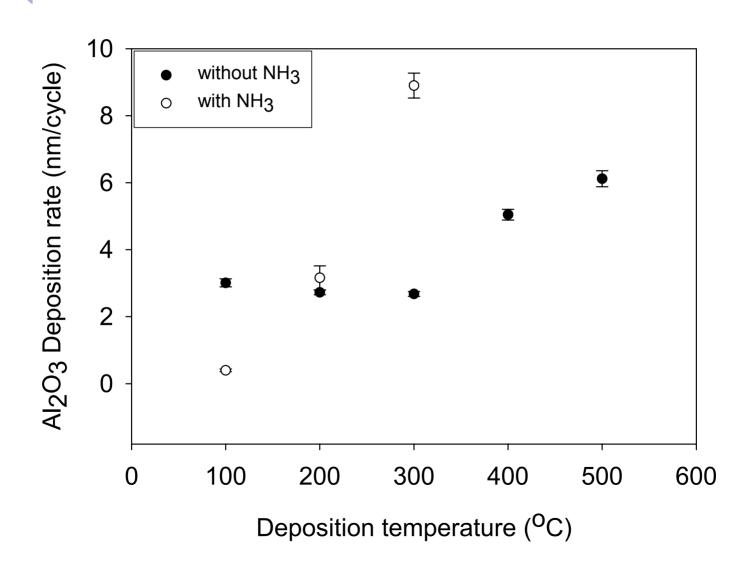
Set Up of Experiment


Cut 2 cm x 2 cm silicon wafers

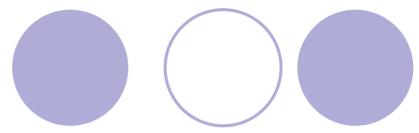
http://www.imps.co.uk/imps%2013-11-03/index act.htm

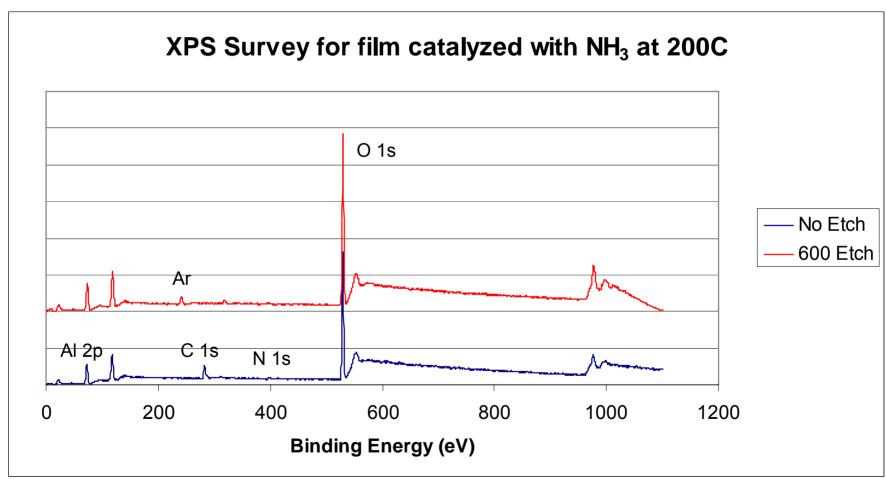
- Cleaning procedure
 - Ultrasonic cleaning-loosens particles (1 min)
 - Distilled water- removes particles (3 min)
 - 4:1 H₂SO₄/H₂O₂- remove organic material (15 min)
 - O Distilled water (3 min)
 - 49% HF- remove native silicon oxide (15 sec)
 - Distilled water (3 min)
 - Dry with nitrogen

Metal Organic Chemical Vapor Deposition



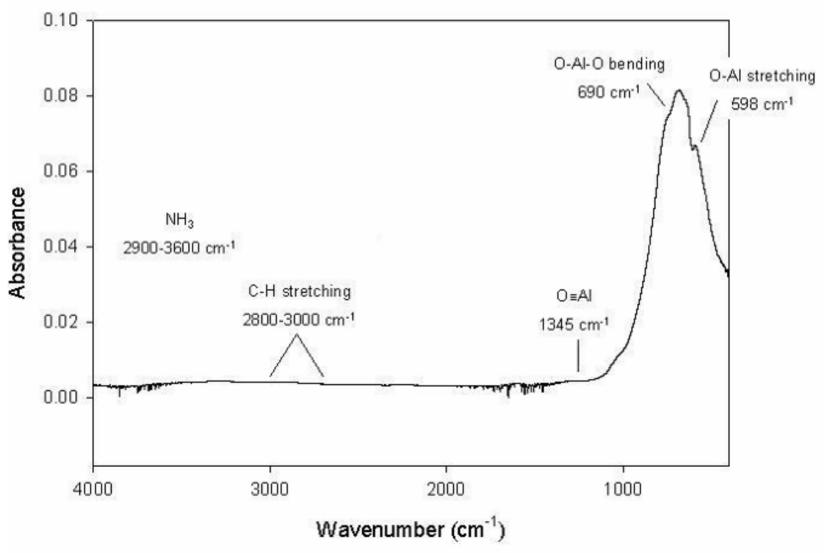
Analysis Techniques (


- Ellipsometric Spectroscopy
 - OThickness


- X-Ray Photoelectron Spectroscopy (XPS)
 - Stoichiometry, Composition
- Fourier Transform Infrared Spectroscopy (FTIR)
 - Composition

Comparing the Results

XPS Analysis: Stoichiometric


O/Al ratio	Sample1	Sample3	Sample2	Sample4
	No NH ₃		NH_3	
Temperature (C)	300	200	300	200
No Etch	1.596	1.619	1.671	1.638
300 sec Etch	1.490	1.493	1.608	1.540
600 sec Etch	1.472	1.479	1.560	1.534

From 2006 experiments

- 2004 experiments by A. Roy Chowdhuri and C.G. Takoudis
 - Stoichiometric ratio of O/Al was 2.0 ± 0.1


FTIR Analysis

Conclusions and Future Work

- NH₃ raised the deposition rate in the temperature range of 200-300°C
- Without Ammonia
 - Absorption controlled until 300°C
 - Reaction controlled after 300°C
- With Ammonia
 - Reaction controlled from 100-300°C
 - At 100°C ammonia gets absorbed therefore less TMA is absorbed results in lower Al₂O₃ deposition rate
- Purity of the film was not compromised
- Continue to perfect use of NH₃ in the deposition of Al₂O₃

- Brewer, R.T. et al. (2004) Ammonia pretreatment for high-k dielectric growth on silicon. Applied Physics Letters. 85, 3830-3832.
- Chowdhuri, A. Roy and Takoudis, C.G. (2004) Investigation of the aluminum oxide/ Si (1 0 0) interface formed by chemical vapor deposition. Thin Solid Films. 446, 155-159.
- Hiremane, Radhakrishna. (2005) From Moore's Law to Intel Innovation—Prediction to Reality. Technology @ Intel Magazine. 1-9.
- Jung, Sung-Hoon and Kang, Sang-Won (2001) Formation pf TiO₂ Thin Films using NH₃ as Catalyst by Metalorganic Chemical Vapor Deposition. Japan Society of Applied Physics 40, 3147-3152.
- Klaus, J.W. and George, S.M. (2000) Atomic layer deposition of SiO₂ at room temperature using NH₃-catalyzed sequential surface reactions. Surface Science. 447, 81-90.
- Klein, T.M. et al. (1999) Evidence of aluminum silicate formation during chemical vapor deposition of amorphous Al₂O₃ thin films on Si(100). Applied Physics Letters. 75, 4001-4003.
- Krug, C. et al. (2000) Atomic Transport and Chemical Stability during Annealing of Ultrathin Al₂O₃ Films on Si. 85, 4120-4123.
- Ong, C.W. et al. (1997) Structural Studies of reactive Pulsed Laser-Deposited CN_x Films by X-ray Photoelectron Spectroscopy and Infrared Absorption. Journal of The Electrochemical Society. 32, 2347-2352.
- Ogita, Y. et al. (2003) Al₂O₃ formation on Si by catalytic chemical vapor deposition. Thin Solid Films. 430, 161-164.
- Pradhan, Siddhartha K. et al (2003). Growth of TiO2 nanorods by metalorganic chemical vapor deposition. Journal of Crystal Growth. 256, 83-88.
- Takahashi, Hisao et al. (1991). Alterations in Hepatic Lipids and Proteins by Chronic Ethanol Intake: A High-Pressure Fourier Transform Infrared Spectroscopic Study on Alcoholic Liver Disease in the Rat. Alcoholism: Clinical and Experimental Research. 15, 219.
- Wilk G.D. and Wallace, R.M. (2001) Exploring the Limits of Gate Dielectric Scaling. Semiconductor International. 153-158.
- Wilk, G.D. et al. (2001) High-k gate dielectrics: Current status and materials properties considerations. Applied Physics Review 89, 5243-5275.
- Wilk G.D. and Wallace, R.M. (2002) High K Gate Dielectric Materials. MRS Bulletin. 192-197.

Acknowledgements

- NSF EEC-0453432 Grant, Novel Materials and Processing in Chemical and Biomedical Engineering (Director C.G. Takoudis), funded by the DoD-ASSURE and NSF-REU Programs
- NSF CTS-0630470 & 0434201 GOALI: Atomic-scale Investigation of High Dielectric Constant Thin Films Using In Situ and Other Techniques, (Director C.G. Takoudis)
- REU program at the University of Illinois-Chicago
- NSF and DoD
- Peggy Song
- Dr. Christos Takoudis

