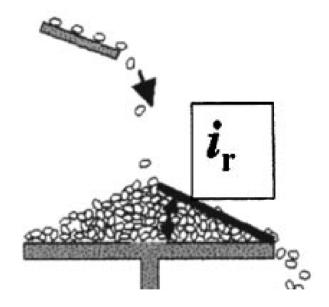
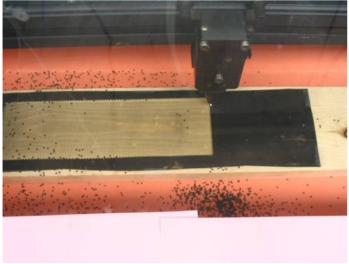
Granular Physics: Making Particles and Measuring the Angle of Repose

> Becky Carlton Advisor: Dr. Alan Feinerman August 3, 2006

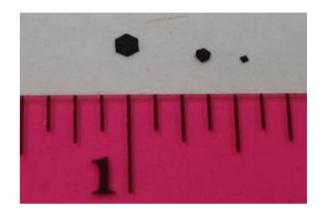

Overview

- What is Granular
 Physics?
 - Study of behavior of many small particles
 - Different from solid or liquid behavior
- Where is it used?
 - Applications in industry
 - Natural phenomena


Project Outline

- Long term project
 - Flow and Angle of Repose
 - Shape, Size, Material, Effective Gravity
- This Summer
 - Method Improvement
 - Manufacturing Particles
 - Preliminary measurements

Accomplishments


- Adjustment of method of production
 - Bed of Nails
 - Electrostatics
 - Simple platform
- Manufactured tens of thousands of identical particles
- Particle analysis

Hexagon with scalloped edges

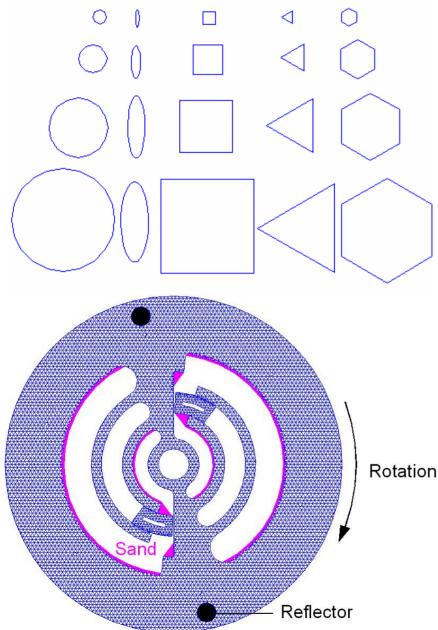
Particle Data

Square with notch on corner

- Particles rough around the edges
- N particles = M/D/V
- Cutting method is still not optimal

 $L_1 = 0.0318$ ", $L_2 = 0.019$ ", $L_3 = 0.016$ " (reference: 1/32 = 0.03125)

Mass Measurements used to calculate total number of collected particles									
		Mass of	Volume per	Density					
Туре	L (in)	Collection (g)	Particle (in ³)	(g/in^3)	N particles	N cut	% Error		
Large Square	0.054	7.513	1.17E-05	19.44	33127	N/A	N/A		
Large Triangle	0.073	N/A	9.23E-06	19.44	N/A	N/A	N/A		
Small Square	0.016	0.923	1.02E-06	19.44	46357	64578	-39.3		
Small Hexagon	0.019	7.680	3.75E-06	19.44	105282	119295	-13.3		
Large Hexagon	0.032	6.922	1.06E-05	19.44	33453	35588	-6.38		


Angle of Repose Data

- Angle of Repose = Tan⁻¹(h/r)
- Carbon Paper Squares
 Side width = 0.054 in
- Carbon Paper Triangles
 - Side width = 0.073 in

Particle Type	Carbon Paper	Carbon Paper	Carbon Paper	Carbon Paper
	Squares	Squares	Triangles	Triangles
Surface Radius	1.237	2.497	1.237	2.497
(cm)				
Avg. Height	1.26	2.25	1.33	2.22
(cm), Ten trials				
Angle of	45.5	42.0	47.2	41.7
Repose (deg)				

Future Direction

- Suggestions
 - Make intermediate sizes
 - Cut circles and ovals
 - Reconsider the bed of nails
- A lot remains to be done
 - Different materials
 - Tens of microns down to nanometers
 - Increased gravity
 - poly-disperse collection of particles

Acknowledgements

- NSF-REU Program, NSF EEC-0453432 Grant
- DoD-ASSURE Program
- Novel Materials and Processing in Chemical and Biomedical Engineering
- Dr. Christos Takoudis
- Dr. Alan Feinerman
- Dr. Paul Dolan
- Tatjana Dankovic
- Kathy Augustyn
- Denisa Melichian

References

- Barton, John M. H. and Steven G. Buchberger, "Geometrical analysis of sand piles on small platforms," *Physical Review E* 68 (2003): 011303.
- Cesse, I., et al. "Packing in the Spheres," Science 303 (2004): 968-969.
- Chang, Kenneth. "Problem: Salt Sticks in the Shaker. Solution: Make It Roll." *New York Times* 13 June 2006.
- Dayo, A., W. Alnasrallah, and J. Krim. "Superconductivity-Dependent Sliding Friction", *Phys. Rev. Lett.* 80 (1998): 1690-1693.
- Dolan, P. J. and B.A. Gordon. "Angle of Repose and Packing Fraction of Large Granular Particles, as a Function of Shape," submitted to *Nature: Physics*.
- Guterl, Fred. "Riddles in the Sand," *Discover* 17 (1996).
- Hornbaker, D. J., R. Albert, I. Albert, A.-L. Barabási and P. Schiffer. "What keeps sandcastles standing?" *Nature* 387 (1997): 765.
- Jaeger, H. M., and Sidney R. Nagel. "Physics of the Granular State" Science 255 (1992): 1523-1531.
- Kakalios, James. "Granular physics or nonlinear dynamics in a Sandbox," *American Journal of Physics* 73 (2004).
- Ristow, Gerald R. "Pattern Formation in Granular Materials," *Springer-Verlag.* 1999.