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Abstract 
 

Design of catalytic pellet reactor is a challenging task because of the complicated 
mechanism and transport phenomenon inherent to this problem. Process uncertainties 
such as the feed flow rate, porosity of the pellet, reaction rate coefficient, etc. present 
additional complexity. This paper investigates the method to quantify uncertainties of 
design parameters in the case study of catalytic pellet reactor design. 

The case study starts with developing models for a single catalytic pellet. 
Concentration and temperature profiles are solved numerically by collocation method for 
isothermal and non-isothermal pellets under steady and dynamic conditions. To account 
for the mass diffusion effect in the rate equation, the effectiveness factor η is introduced 
and solved for steady state pellets. Its sensitivity with respect to pellet surface conditions 
and other physical parameters are extensively studied in this paper. To solve for 
temperature and concentration profiles inside a reactor, reactor and pellet governing 
equations need to be solved simultaneously. With collocation method, we are able to 
obtain concentration and temperature profiles for the reactor successfully.  

Two important packed bed catalytic reactor behaviors concern us: “hotspot” and 
multiplicity. The multiple steady states in pellets are observed and analyzed in this paper. 
The reactor multiplicity is also studied combing the observation of “hotspots”. Finally, 
we are able to demonstrate with a specific case that uncertainty presented in design 
parameters leads to “hotspots” and possible melt down of the reactor. Uncertainty tests 
should be extensively studied along with the design of a reactor.    
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1. Introduction 
 

Parameters such as the properties of the chemicals, inlet flow rate, and reaction 
coefficient etc. present uncertainties in their values. The uncertainties in these parameters 
directly influence many aspects of our design such as the safety condition or the product 
quality. The traditional method to handle process uncertainties is to over-design the 
process so that a “safety factor” is incorporated. However, such traditional method often 
fails to predict the magnitude of safety factor and to provide insight of the processes. The 
lack of understanding uncertainties in design parameters often lead to loss of revenue or 
unsafe design. Quantifying the uncertain parameters will enable engineers to rigorously 
describe the safety condition of their design, guarantee product quality and other 
operating conditions. The importance of studying uncertainty is demonstrated by the case 
study of a catalytic pellet reactor design.  

Catalytic pellet reactor has commercial applications such as reducing automotive 
emission gas, oxidation of hydrocarbons, paraffin dehydrogenation, hydrocracking, and 
dehydrocyclization etc. In designing a pellet reactor, packed-bed geometry with 
stationary spherical catalyst pellets shown in Fig.1 is usually adopted. The boundary 
conditions for an individual pellet are described by its surface concentration and 
temperature, whereas the reactor boundary conditions are described by inlet 
concentration ad temperature.  The pellets can be treated as a porous media, where 
reactant diffuses axially along the reactor, and also radially into the pellets. To fully 
describe a reactor, several design unknowns require extensive attention: concentration 
profile and temperature profile inside the reactor. These two design unknowns are 
directly related to the conditions of individual pellets by pellet boundary conditions and 
effectiveness factor η. As we focus our attention on solving pellets shown Fig. 1, catalytic 
pellets are porous to allow diffusion of reactant, consequently creating a concentration 
gradient with respect to the radius. Discussed in Weisz and Hicks [4], if the chemical 
reaction is accompanied with a heat effect, significant temperature gradient also develops 
within the pellet. In such a case, concentration and temperature profiles of the pellet must 
be solved simultaneously.  

 

 
Fig. 1 Expanded view of a fixed-bed pellet reactor  
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2. Development of Mathematical Model 
 

In this case study, SO2 oxidation catalyst for production of sulfuric acid is chosen. This 
reaction as expressed in Eq. (1) is first order with respect to SO2. 

 

SO2 (g)+1/2O2(g) ↔SO3 (g) (1) 

SO3 gas continues to react with water in later processes to form sulfuric acid. The physical 
parameters of the pellets are shown in Appendix.  

To account for diffusion effect inside individual pellets, a variable known as the 
internal effectiveness factor η is introduced in Weisz and Hicks [4]. Its definition is 
expressed below: 

actual reaction rate
reaction rate at pellet surface

η =  (2) 

The expression of rate of reaction incorporating Eq. (2) have been derived by Damkohler 
[5], Thiele [6], Zeldowitsch [7], and Wheeler [8], leading to the simplified form shown in 
Eq. (3) for a first order reaction.  
 

ACTkRateaction )(Re η=  (3) 

Where k(T) is the reaction rate coefficient and CA is the concentration of reactant A. The 
reaction coefficient for non-isothermal pellet can be expressed with Arrhenius equation [2] 
shown in Eq. (4). For isothermal pellet, it is assumed to be a constant. Refer to 
Nomenclature section for parameter definitions. 
 

( ) exp 1ref
ref

ref

TEk T k
RT T

⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 (4) 

 
2.1 Individual Pellet at Steady State 

Isothermal Condition 
 

An isothermal pellet only presents mass transfer within the solid. Simplify the 
expression of a first order reaction to Eq.(5), a mass balance on the spherical shell control 
volume shown by Fig. 2 can be done easily.  

BA catalyst⎯⎯ →⎯  (5) 
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Fig. 2 Control volume of a spherical pellet 

 
The concentration profile with respect to the radius of the pellet is then expressed 

in Eq.(6). 
2

2

2 0A A A

e

d C dC kC
dr r dr D

+ − =  (6) 

De is diffusivity coefficient of the pellet. This equation is easily solved analytically.  

Non-isothermal Condition 
 

For non-isothermal condition, the temperature profile inside the pellet needs to be 
developed along with concentration profile. By doing an energy balance on the same 
control volume, the system of differential equations is shown below: 

 
2

2

( )2 0A A A

e

dC dC k T C
d r r dr D

+ − =  (7) 

0)()(2
2

2

=
∆−

++ ACTkH
dr
dT

rrd
dT

λ
 (8) 

 
Notice that reaction coefficient k is no longer a constant. Shown in Villadsen and 
Michelsen [1], converting Eq.(7) and (8) into dimensionless form and inserting Arrhenius 
equation for k(T), we obtain: 
 

2
2

2

2 1exp 1 0d d
d d
ϕ ϕ γ ϕ
θ θ θ ζ

⎡ ⎤⎛ ⎞
+ −Φ − =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (9) 

2

2

2 1exp 1 0d d
d d
ζ ζ β γ ϕ
θ θ θ ζ

⎡ ⎤⎛ ⎞
+ − − =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
  (10) 

Thiele Modulus: 
2

2 exp( )a

e s

ER a
D RT

⎡ ⎤
Φ = −⎢ ⎥

⎣ ⎦
 (11) 
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ref

A

C
C

=ϕ ,
R
r

=θ , 
ref

T
T

ζ = , 
RT
Ea=γ , sHkβ

λ
∆

=
 

(12) 

 
a is a dimensionless variable that accounts for reference reaction rate coefficient. Shown in 
Eq. (12), these dimensionless variables were discussed by Pita et al. [9]. Cref and Tref are 
taken to be the concentration of reactant and temperature on the surface of the pellet. From 
here on, we will directly indicate reference conditions to be surface conditions, which are 
indicated by subscript s. R is the radius of the pellet. The boundary conditions for the 
dimensionless equations are: 
 

[ ] 1
1

s

T
Tθ

ζ
=
= = and 

0

0d
d θ

ζ
θ =

⎡ ⎤ =⎢ ⎥⎣ ⎦
 (13) 

[ ] 1
1A

As

C
Cθ

ϕ
=
= = and  

0

0d
d θ

ϕ
θ =

⎡ ⎤ =⎢ ⎥⎣ ⎦
 (14) 

 
At the surface of the pellet, reactant concentration and temperature are equal to surface 
conditions. At the center of the pellet, we assume the concentration and temperature are 
constant. Eq. (9) and (10) form a system of coupled second order non-linear differential 
equations. Numerical method must be employed to solve for φ and ζ.  
 
2.2 Individual Pellet at Dynamic State 
 

To calculate the pellet concentration and temperature profile at dynamic state, 
replace the right side of steady state equations with time variations:  
 

2
2

2

2 1exp (1 )d d
d d

d
dt

ϕ ϕ ϕγ ϕ
θ θ θ ζ

⎡ ⎤
+ −Φ − =⎢ ⎥

⎣ ⎦
 (15) 

2

2

2 1exp (1 )d d
d d

d
dt

ζ ζ ζβ γ ϕ
θ θ θ ζ

⎡ ⎤
+ − − =⎢ ⎥

⎣ ⎦
 (16) 

Initial Conditions: 
0

o

t s

Td
dt T
ζ

=

⎡ ⎤ =⎢ ⎥⎣ ⎦
, and 

0

o

t As

Cd
dt C
ϕ

=

⎡ ⎤ =⎢ ⎥⎣ ⎦
 (17) 

  
To and Co are variables to represent initial conditions for dynamic state at each 

radial position. Boundary conditions for Eq.(15) and (16) and  are similar to those of  
steady state pellet governing equations shown in Eq. (13) and (14). We are free to choose 
the values of To and Co. By choosing different initial profiles, we can observe how the 
pellets approach steady state on a time scale.  
 
2.3 Effectiveness Factor 

 
Derived by Villadsen and Michelsen [1] , η is expressed as the ratio of volume 

averaged reaction rate relative to the rate at surface temperature and concentration.  

 7



1
2 1

1
10

1
2 1 0

0

( , )
( , )

(1,1)

s

s

s

rate dr
rate dr

rate dr

ϕ ζ
η

+

ϕ ζ +

+

Φ
= =

Φ

∫
∫

∫
 (18) 

 
Inserting dimensionless first order rate equation into the equation above, we obtain 

the expression of effectiveness factor:  
1

2

0

13 ( ) exp (1 ) dη ϕ θ γ θ θ
ζ

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∫  (19) 

 
 If we take into account the diffusion effect from the bulk of the reactor to the 
surface of the pellet, we can express effectiveness factor using bulk concentrations and 
temperatures. Neglecting intraparticle temperature gradient, the resulting expression is 
shown in Eq. (20).  
 

1coth
1coth3

11

11
2

1 −+ΦΦ
−ΦΦ

Φ
=

M

M

Bi
Bi

η  (20) 

⎥
⎦

⎤
⎢
⎣

⎡
−Φ=Φ )11(exp22

1 ζ
γ  (21) 

 
Where BiM is the Biot number for mass transfer. Eq. (20) uses an averaged Biot number to 
compensate the use of an averaged dimensionless temperature.  
 Discussed in Pita et al. [9], for a specified set of parameters such as β, γ and Φ, 
there may exist more than one feasible steady state. All variables however, satisfy the 
governing equation (9) and (10), with boundary conditions (13) and (14). Shown in the 
form of effectiveness factor, one set of β, γ and Φ may correspond to multiple effectiveness 
factors. Also shown by Lee et al. [11], uncertainty in parameters may initiate the switching 
between one steady state to another.  
  
 
2.4 Reactor Design at Steady State 

  
By doing a mass balance and energy balance on a cylindrical control volume of the 

reactor shown in Fig. 3, the expression for concentration and temperature is derived in 
Fogler [2], shown in Eq. (22) and (23). 
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Fig. 3 Control Volume of a pellet reactor 

 
2

2 ' 0A A
AB A b

d C dCD U r
dz dz

ρ− + =  (22) 

2

2 ' 0e g p A
d T dTk C U r H
dz dz

ρ− + ∆ =

AC

 (23) 

 
Where '  is the overall rate of reaction within the catalyst per unit mass of catalyst. With 
the expression of η derived in Eq. (20), overall rate of conversion can be expressed as 
Eq.(24).  

Ar

' ( )A ar k T Sη− =  (24) 

Sa is the internal surface area of the pellet. For the convenience of calculation, we prefer to 
work with scaled equations incorporating expression for k(T). Convert Eq.(22) and Eq. (23) 
into scaled form with respect to inlet conditions, the resulting expression are shown Eq. 
(25) and (26).   

 

0)11(exp2

2

=⎥
⎦

⎤
⎢
⎣

⎡
−−−

r
r

AB

boar

AB

r

T
C

D
kS

dz
dC

D
U

dz
Cd

γ
ρη  (25) 

0)11(exp2

2

=⎥
⎦

⎤
⎢
⎣

⎡
−

∆
−−

r
r

ib

bia
r

b

pgr

T
C

Tk
CSH

dT
k

UC
dz

Td
γ

ρηρ  (26) 

 i
r T

TT =
, i

A
r C

CC =
 

(27) 

 
The boundary conditions are shown in Eq.(28) and (29).  
 

1][ 0 ==zrC
  
[ ] 10 ==zrT

 
(28) 

0
1

=⎥⎦
⎤

⎢⎣
⎡

=z

r

dz
dC

 
0

1

=⎥⎦
⎤

⎢⎣
⎡

=z

r

dz
dT

 
(29) 
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Ti and Ci represent inlet conditions and Cr, Tr represent scaled concentration and 
temperature profile along the axial direction of the reactor. At the inlet of the reactor, the 
temperature and concentration are given to be inlet conditions. And for a sufficiently long 
reactor, the concentration and temperature at the end of the reactor can be assumed 
constant. The design of the reactor is coupled with solving pellet governing equations 
because effectiveness factor is a function of pellet temperature profile. Further more, pellet 
surface conditions are replaced by the bulk conditions inside the reactor. In order to solve 
reactor profiles, Eq. (9), (10), (20), (25) and (26) need to be solved simultaneously. The 
boundary conditions are listed in Eq. (13), (14), (28) and (29) with Ts, Cs replaced by Tr, 
Cr.   
 Industrial packed-bed reactors usually adopt cooling process in addition to the 
reactor to remove the heat produced. This application requires us subtracting a “heat 
removal” term from the energy balance shown in Eq.(26). Heat removal produces the effect 
of “hotspot” for typical strongly exothermic reactors. Discussed in Froment et al. [3] and 
Syed et al. [10], the magnitude of hot spot depends on the heat of reaction, rate of reaction, 
inlet conditions etc.  
  
2.5 Reactor Design at Dynamic State 
 

With the steady state reactor governing equations defined, their dynamic forms are 
easily obtained by adding time variation:  
 

2

2

1exp (1 )a o br r
r

AB AB r

S kd C dC dCU C
dz D dz D T dt

η ρ γ
⎡ ⎤

− − − =⎢ ⎥
⎣ ⎦

r  (30) 

2

2

1exp (1 )g p a i br r
r r

b b i r

C U H S Cd T dTdT C
dz k k T T dt

ρ η ρ γ
⎡ ⎤∆

− − − =⎢ ⎥
⎣ ⎦

 (31) 

Initial Conditions: 
0

or

t i

TdT
dt T=

⎡ ⎤ =⎢ ⎥⎣ ⎦
 and 

0

or

t i

CdC
dt C=

⎡ ⎤ =⎢ ⎥⎣ ⎦
 (32) 

  
Boundary conditions for Eq. (30) and (31) are identical to those of steady state 

reactor governing equations.  
 
3. Methodology 
 

The numerical method chosen to solve systems of second order differential 
equations is collocation method, a type of weight residual method (WRM). Weight residual 
method assumes that the analytical solution can be approximated in a piecewise fashion by 
a superposition of functions with unknown coefficients aj shown in Eq.(33).  

∑
=

=
n

j
jjeapproximat xtatxT

1

)()(),( φ  (33) 

Shown in Fig. 4, solving for x at each node we choose and connect all the nodes together 
linearly, we obtain an approximated function.  
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Fig. 4 Schematic of weight residual method 

 
We expand Eq. (33) into a set of base (or trial) functions expressed as φj in Eq. (34). 
To(x,y,z,t) is chosen so that the boundary conditions are satisfied.  

 

0
1

( , , , ) ( , , , ) ( ) ( , , )
n

j j
j

T x y z t T x y z t a t x y zφ
=

= +∑  (34) 

 
Weight residual method approximates the analytical solution by choosing 

coefficients aj so that the difference between analytical solution and estimated solution 
(residual, R) is minimized. Express this condition using integral form: 

( , , ) ( , , , ) 0,    1, 2, ,mW x y z R x y z t dxdydz m M= =∫∫∫  (35) 

Where W is a set of weight functions which are used to evaluate equation above.  
 Collocation method chooses the weight function to be Dirac delta functions show in 
Eq.(36) such that the residual at each chosen node is zero. Characteristic of collocation 
method is that it forces the residual to be zero at the nodes chosen, and has no control on 
the residual between nodes.  
 

( ) ( )
( ) ( ) ( )

( ) ( )
( )  

, ,

m m

m m

m m m m

W x x x

W x R x d x x R x d

R x R x y z

δ

δ

= −

Ω = −

= =
∫∫∫ ∫∫∫ Ω  (36) 

 
 As an example, we will use Eq.(9) and (10) with boundary conditions in Eq.(12) 
to show how collocation method solves second order nonlinear differential equations. 
The most essential step is to discretize the differential equations and boundary conditions 

Approximated Function 

 ∑
=

=
n

j
jjeapproximat xtatxT

1
)()(),( φ

x 

A node Original Function  

t 
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using Lagrange polynomial (chosen for this case study). The expression of Lagrange 
polynomials is shown below: 

i
0

( ) ( ) y
m

i
i

y x l x
=

= ∑  
0

    ( )
N

j
i

j i j
j i

r r
with l x

r r=
≠

−
=

−∏                 (37) 

Its first order derivative and second order derivative are solved to be: 

1
0 0

( ( ))( )'( ) ( )
i

N N
i

i ix x
i i

d l rdy ry r y l r y
dr dr=

= =

′= = =∑ ∑             (38) 

, 11

22
''

2 2
0 0

( ( ))''( ) ( ) ''
i x

N N N
i

i i ix x
i i i

d l rd yy r y l r y l y
dr dr=

= = =

= = = =∑ ∑ ∑
0

i      (39) 

 
Inserting Lagrange polynomial and its derivatives into Eq. (9) and Eq. (10) for every 
appearance of unknown variables: φ and ζ, Eq. (9) and (10) are transformed into 
discretized form: 

  
2

2
2

0 0

( ( )) ( ( ))2 1( ) exp 1   =    0   

  

N N
i j i j

i i j
i ij j

d l d l
d d
θ θ

ϕ ϕ γ ϕ
θ θ θ ζ= =

⎡ ⎤⎛ ⎞
+ −Φ − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑    (40) 

2

2
0 0

( ( )) ( ( ))2 1( ) exp 1    =    0   

  

N N
i j i j

i i j
i ij j

d l d l
d d

θ θ
ζ ζ β γ ϕ

θ θ θ ζ= =

⎡ ⎤⎛ ⎞
+ − − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑   (41) 

Where j=1…N, and i=0…N. And boundary conditions are also transformed into: 
 

   

0

0

0

0

( ( 0)) = 0 

( 1) = ( 1)

( ( 0)) = 0

( 1) = 1

N
i

i
i
N

i i N c N
i

N
i

i
i
N

i i
i

d l
d

l k

d l
d

l

 

θ ϕ
θ

θ ϕ ϕ ϕ

θ ζ
θ

θ ζ

=

=

=

=

=

= =

=

−

∑

∑

∑

∑

−
                     

(42) 

The discretized equations shown above can be solved in commercial available software. 
All numerical results in this report are obtained through software MATLAB.  
 
4. Results 
 
4.1 Individual Pellet at Steady State 

Isothermal Condition 
 

To solve for the concentration profile in Eq. (6) and effectiveness factor in Eq. 
(19) for an individual pellet, collocation method is employed. In order to demonstrate the 
accuracy of collocation method, it is programmed into MATLAB and the results are 
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compared to those of analytical method. Fig. 5 shows that collocation method completely 
captures the accuracy of analytical solution. For an arbitrary physical condition (Thiele 
modulus=2), the percentage difference between η solved analytically and numerically is 
less than 0.1%.  

 

 
Fig. 5 Concentration profile for an isothermal Pellet.  

Non-Isothermal Condition 
 

For a non-isothermal pellet, temperature profile must be coupled with 
concentration profile. The system of differential equations in Eq.(9) and (10) are solved 
using collocation method. We choose five collocation points or radial position to develop 
numerical profiles. For an arbitrary physical condition of an exothermic reaction, the 
concentration and temperature profiles are plotted in Fig. 6. Notice the temperature is 
higher in the center of the pellet (r=0) due to the exothermic reaction chosen and 
decreases radially to satisfy the boundary condition in Eq.(27). Because of the non-
linearity of the problem, initial guesses are especially important for solutions to converge.  
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Fig. 6 Concentration profile (Left) and temperature profile (Right) for an 
arbitrary physical condition 

Sensitivity of Effectiveness Factor 
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The sensitivity of effectiveness factor is tested by varying the target parameter 
while other parameters are fixed.  Fig. 7 shows the behavior of effectiveness factor 
against pellet surface concentration CAs and surface temperature Ts.  
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Fig. 7 Behavior of effectiveness factor with respect to surface 

concentration (left) and surface temperature (right).  
 
As shown in Fig. 7, effectiveness factor increases as surface concentration 

increases and decreases as surface temperature increases. This behavior is predicted from 
the definition of η in Eq.(2): At high temperature, diffusion effect becomes the limiting 
factor toward the conversion rate and thus increases the denominator of η. On the other 
hand, increasing surface concentration minimizes the impact of diffusion and η behaves 
the opposite. A 3D plot of effectiveness factor with respect to Ts and CAs is also 
generated in Fig. 8 to predict the general trend of effectiveness factor.  

 
Fig. 8 Effectiveness factor vs. Ts and CAs

 
Continue to test η sensitivity toward physical properties of the pellet, we choose 

our variables to be diffusivity coefficient (De), heat conductivity (Ke), and finally reaction 
rate coefficient in the form of dimensionless variable a. The results in Fig. 9 and Fig. 10 
are obtained using surface condition of CAs=2.46E-4 mol/m3 and Ts=550K.  
 

 14



 
Fig. 9 Effectiveness factor vs. Ke (left) and De (right) 

 
Fig. 10 Effectiveness factor vs. dimensionless rate coefficient α 

 
The range of the sensitivity tests is approximately 100% above and below 

nominal value used in the case study. Effectiveness factor decreases as heat conductivity 
or α increase due to relative large limiting effect of diffusion. As diffusivity coefficient 
becomes larger, effectiveness factor is limited by surface reaction rate and thus increases.  
 
4.2 Individual Pellet at Dynamic State 
 

For dynamic condition, we need to solve Eq. (15) and Eq. (16) along with 
specified initial conditions. This task can be easily done in MATLAB using solver 
ODE45. Since the convergence of solution is very sensitive to the initial conditions, we 
choose the initial conditions for scaled concentration profile to be the result of the steady 
state and scaled temperature profile to be 1. Fig. 11 shows the dynamic concentration and 
temperature variation with respect to time for five collocation nodes r we chose to use.  
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Fig. 11 Concentration (left) and  Temperature (right) profile for a dynamic 
state pellet 

 
The graphs show that our program successfully predicts the dynamic behavior of 

a pellet according. The x-axis in the graphs above is a dimensionless time scale. As time 
progresses, the concentration and temperature inside the pellet both converge to steady 
state conditions as predicted. The steady results above are obtained at Ts=550K and 
CAs=2.46E-4 mol/m3.  

Sensitivity of Dynamic Pellet  
 

For the dynamic behavior of pellets, concentration and temperature profiles are 
obtained as shown in the last section. For practical purposes, the surface temperature and 
concentration around the pellets are both subject to disturbances with respect to time. 
Therefore the sensitivity test toward the dynamic pellet is aimed at those two variables: 
Ts and CAs. Concentration and temperature inside a pellet are functions of both radial 
position and time. The pellet profile sensitivities with respect to surface concentration for 
a scaled radius of 0.113 are shown in Fig. 12. The nominal surface conditions are chosen 
to be: CAs=2.46E-6 mol/m3, Ts= 550K.  
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Fig. 12 Dynamic pellet concentration (left) and temperature (right) 

profile vs. CAs (Nominal Value=2.46E-6 mol/m3) 
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From Fig. 12, temperature profile increases drastically as the inlet concentration 
increases. This is predicted as more reactant is introduced into the reactor, more heat is 
released due to the exothermic nature of the reaction. We also observe an increasing 
scaled concentration profile as we decrease the inlet concentration. Dynamic profile 
sensitivity against changing surface temperature is shown in Fig. 13.  
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Fig. 13 Dynamic pellet concentration (left) and temperature (right) 

profile vs. Ts (Nominal Value=550K) 
 
 We observe from Fig. 13, the reactor concentration becomes increasingly unstable 
as we raise inlet temperature. For large increase in temperature, it takes the reactor much 
longer to return to steady state.  
 
4.3 Reactor Design at Steady State 
 

Eq. (25) and Eq. (26) present the governing equations for the reactor with 
boundary conditions described by Eq. (28). We choose five collocation points or axial 
position to obtain numerical profiles. Notice the effectiveness factor obtained from pellet 
profiles is used to solve reactor governing equation. Further more, the boundary 
conditions for the pellets are no long constant surface conditions, as they are now related 
to the bulk of the reactor. To obtain the profiles for the reactor, pellet and reactor 
governing equations have to be solved simultaneously. The four equations are coupled 
together through effectiveness factor and boundary conditions of the pellets.  

The boundary conditions for the reactor are known inlet conditions: Ti and Ci. The 
program is written so that at each reactor collocation node (axial position, z), pellet 
profiles (with respect to five radial collocation node inside the pellet) are solved with one 
set of Cr and Tr, which are then associated with the rest of the reactor. The reactor 
profiles are then solved and displayed in Fig. 14.  The results are generated with 
Ti=300K, Ci=1.6E-2 mol/m3.  
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Fig. 14 Steady state concentration profile (left) and temperature profile 
(right) for coupled reactor design. 

Due to an exothermic reaction chosen for the case study, the temperature rises 
with respect to the axial location of the reactor. With the inlet conditions chosen, the 
temperature increase across the reactor is around 90K.   

Sensitivity of Steady State Reactor 
 
 As mentioned above if we want to observe how the reactor responds to 
uncertainties of different parameters, it is necessary for us to do sensitivity test of reactor 
profiles against selected variables. For practical purposes, inlet conditions are subject to 
changes. The inlet temperature fluctuation is from 270K to 390K, a reasonable 
industrially applicable range. Again, the nominal value chosen for our reactor is 
Ti=300K, Ci=1.6E-2 mol/m3. The reactor sensitivity toward inlet concentration is shown 
in Fig. 15.  

Fig. 15 Steady state reactor concentration (left) and temperature (right) 
sensitivity vs. Ci. (Nominal value is Ci=1.6E-2 mol/m3) 

 
From the figure above, we observe there is a decrease of concentration profile as 

we increase the inlet concentration.  Such phenomenon is the result of scaling. We do 
observe actual decrease in concentration as we multiply the scaled concentration with its 
respective inlet concentration. At the same time, we observe an increase in temperature 
profile as we increase inlet concentration. We may attempt to explain the behavior for 
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that the reaction is exothermic, as the concentration of reactant increases, reactions will 
release more heat.  

The reactor profile sensitivity against inlet temperature is shown in Fig. 16. 
 

 
Fig. 16 Steady state reactor concentration (left) and temperature (right) 

sensitivity vs. Ti. (Nominal value Ti=550K) 
 
From Fig. 16, we observe an increase in reactor concentration profile as we 

increase the inlet temperature. For an exothermic reaction, reaction rate declines as 
temperature increases, thus causing the reactant concentration to increase inside the 
reactor. We also observe a decrease in reactor temperature profile as we increase the inlet 
temperature, again caused by scaling.   
 
4.4 Reactor Design at Dynamic State 
 
 With steady state reactor profiles successfully solved, dynamic profiles can be 
obtained using MATLAB solvers. We notice that the convergence of solution is 
especially sensitivity to the choices of initial conditions (To and Co), therefore the choices 
of initial conditions are not completely at random. We programmed the steady state 
results to be implanted into the dynamic model as initial guess. With this mechanism, 
convergence is much better guaranteed. By changing the inlet conditions (Ti, Ci), we 
observe how reactor responds to the fluctuation in Fig. 17. The results are generated with 
steady state initial guess at Ti=300K, Ci=1.6E-2 mol/m3, and new inlet conditions at 
Ti=300K, Ci=5E-2 mol/m3.  
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Fig. 17 Dynamic concentration profile (left) and temperature profile 
(right) for coupled reactor design. 

 We observe an increase in temperature profile and decrease in concentration 
profile for given collocation points along the reactor as we increase the inlet 
concentration. The behavior can be predicted by studying the sensitivity of steady state 
reactor with respect to inlet conditions. Indeed, the increase in temperature and decrease 
in concentration profile was already predicted by Fig. 15.  
 
4.5 Multiplicity  
 

In studying the relationship between η and Thiele modulus Φ defined in Eq.(11), 
multiple solutions of η of steady state pellets have been observed in highly exothermic or 
endothermic reactions. Shown in Fig. 18, for a γ value of 30, multiple solutions exist for a 
single Thiele modulus at β=0.4. The x-axis shows normalized Thiele modulus. Multiple 
solutions indicate multiple steady states may exist depending on the initial condition of 
the pellet. Further study on the multiplicity behavior and pellet initial condition shows 
that for a single Φ, multiple concentration profiles inside the pellet could be obtained. In 
Fig. 19, three different concentration profiles are observed for the three values of η 
marked on Fig. 18.  
 

 
Fig. 18 Effectiveness factor multiplicity behavior 
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Fig. 20 Multiplicity in reactor, z=0.113 (left) and z=0.5 (right) 
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Fig. 21 Multiplicity in reactor, z=0.887 

 
We also wish to study how uncertainty in different parameters may cause a 

dynamic reactor operating at different steady states to behave differently. This study is 
combined with the study of reactor “hotspot”, which is shown in the next section.  
 
4.6 Reactor Hotspot 
 
 “Hotspot” for fixed bed reactors can be observed for strongly exothermic 
processes. By varying the heat of reaction, length of reactor and the amount of heat 
removed by cooling, we observe a hotspot for the designed reactor at steady state. Shown 
in Fig. 22, “hotspot” for the reactor approximately happens at z=0.12 of the scaled length.  
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Fig. 22 “Hotspot” temperature (left) and concentration (right) profile. 

Figure produced at Ti=300K, Ci=1E-2 mol/m3

  
“Hotspot” phenomenon can be observed when the concentration of reactant 

decreases along the axial direction of the reactor, the decreasing heat of reaction is 
compromised by heat removed by cooling, and thus creating a maximum in temperature 
profile along the reactor. The sensitivity of the “hotspot” varying with inlet conditions 
and reaction rate is shown in Fig. 23 and Fig. 24.  
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Fig. 23 “Hotspot” Sensitivity vs. inlet concentration (left) and inlet 
temperature (right). Nominal values are Ti=300K, Ci=1E-2 
mol/m3. 
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Fig. 24 “Hotspot” sensitivity vs. reference reaction rate (ko). Nominal 

value: ko=4.42E-10 m3/(m2*s). 
 
 As shown in Fig. 23, the location of the “hotspot” is stationary when inlet 
temperature and concentration changes. On the other hand, Fig. 24 shows that the 
magnitude and the location both change as we vary reference reaction rate. Fix inlet 
temperature, the magnitude of “hotspot” increase dramatically as inlet concentration 
increases. While fixing inlet concentration, the magnitude of “hotspot” decreases as inlet 
temperature decreases. In the design of this reactor, we should avoid fluctuating inlet 
concentration as the reactor temperature seems to be much more sensitivity toward the 
inlet concentration. As shown in Fig. 21, if we have Ci=0.05 mol/m3 instead of Ci=0.01 
mol/m3, the highest temperature inside the reactor increases to approximately 750K 
(instead of 360K at nominal inlet concentration). If we prepare our reactor at the nominal 
value of Ci=1E-2mol/m3 without the information of uncertainty, the reactor safety is 
certainty jeopardized.  
 We wish to combine the knowledge of pellet multiplicity and reactor hotspot to 
discover if disturbance of parameter will cause reactor with pellets operating at different 
steady states to behave differently. From Fig. 18, we observe there are two possible 
steady state a and c in pellets, with unstable region b as transition. At these steady states, 
we adjusted our reactor to run dynamic models. We chose the temperature profile at 
z=0.5 and initial steady state at Tr=1.2, Cr=0.7, then we implemented a new inlet 
temperature Ti=300K, Ci=1E-2mol/m3.  This allows us to see how the reactor at z=0.5 
approach distinct steady states with respect to time as shown in Fig. 25.  
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Fig. 25 Dynamic reactor running at multiple steady states (right). z=0.5 
  

If the reactor is operating at the pellet steady state c, then we will not observe an 
obvious “hotspot” for the disturbance we implemented. However, if the reactor is running 
at pellet steady state a, such a disturbance will cause the reactor to have a “hotspot” with 
a temperature twenty times higher than the inlet temperature.  To design a safe reactor, 
we certainly need to conduct uncertainty study in order to fully understand how the 
reactor behaves against possible disturbance in various parameters. To prevent such 
disastrous “hotspot” in this specific reactor, we will have to pay special attention to the 
initial condition of the pellets to force them to approach steady state c. 
 
5. Conclusion 
 
 Designing a catalytic pellet reactor requires engineers to accurately predict the 
mass transfer and heat transfer phenomenon occurring both inside an individual pellet 
and within the entire reactor. To guarantee the safety condition of the process, it is also 
important to study the degrees of uncertainties in the design parameters.  

Collocation method has proven to accurately solve systems of non-linear second 
order differential equations. Using this method, we are able to numerically solve for the 
concentration and temperature profile for an individual pellet under steady and dynamic 
state. With the information for individual pellets known, effectiveness factor η can then 
be evaluated. The sensitivity of effectiveness factor against steady state surface 
conditions and pellet physical properties are studied. Behaviors of effectiveness factor 
against these parameters satisfy the physical picture we predicted.   

We then proceed to study the concentration and temperature profiles of the entire 
reactor. Solving pellet and reactor governing equations simultaneously, numerical 
solutions of reactor profiles at steady state and dynamic state are obtained. Reactor steady 
state sensitivity is done targeting inlet conditions as uncertain parameters.  

As we study the steady state pellets, we observe for one reaction condition, there 
exist multiple effectiveness factor. Such phenomenon indicates multiple steady states 
inside the pellet may exist depending on the initial conditions of the pellets. We are able 
to verify the existence of pellet multiple steady states by observing three distinct 
concentration profiles inside the pellet. As we observe multiple steady states in pellets, 
we continue to study how the reactor responds to such a phenomenon. This study is 
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combined with the reactor behavior “hotspot” to give a sounding prove that uncertainty 
study strongly influences design safety.  “Hotspots” may happen depending on the 
physical parameters of the reactor. In testing the location and magnitude of “hotspot”, we 
observe that the case study reactor is especially sensitive to reactor inlet concentration. 
Implementing multiplicity behavior, a reactor dynamic model is developed to run with 
the different steady states found in pellets and the resulting magnitude of “hotspot” is 
analyzed. Specific example shows that a reactor normally operates at one steady state 
may show no obvious “hotspot” as we disturb inlet conditions, while the same 
disturbance may cause intolerable “hotspot” appearing in the reactor running at a 
different steady state. This is certainty important to warn engineers designing reactors: 
uncertainty study should be done to prevent process failure and unsafe design for every 
design. 

Future work on this design may include studying deeper into reactor multiplicity 
along axial direction. It may be convincing to show a case where pellets operate at 
different steady states as concentration and temperature change inside the reactor. A 
dynamic model will help to show if there is transition of steady states inside the reactor 
with respect to time. 

 
7. Nomenclature 
 

a Dimensionless reaction rate coefficient 
BiM Bios number for mass transfer 
CA Pellet concentration of reactant A 
CAs/Cs, Ts Pellet surface conditions 
Ci, Ti Reactor inlet conditions 
Co, To Initial conditions 
Cp Heat capacity of gas reactant 
Cr Scaled reactor bulk concentration 
DAB Mass diffusion coefficient  
Ea Arrhenius activation energy 
kb Heat conductivity coefficient of the bed 
ke Heat conductivity coefficient of gas reactant 
r Radial position along the pellet 
R Pellet radius 
r'A Overall rate of reaction   
Sa Pellet internal surface area 
T Pellet temperature 
Tr Scaled reactor bulk temperature  
U Superficial velocity 
β Dimensionless variable in pellet equation 
γ Dimensionless variable in pellet equation 
∆H Heat of reaction  
ζ Scaled pellet temperature 
η Internal effectiveness factor 
θ Scaled radius 
ρb Density of the bed 
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ρg Density of reactant gas 
φ Scaled pellet concentration 
Φ Thiele modulus 
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9. Appendix 
 
6.1 Physical Properties of the Pellet
 
ε=0.4 (porosity) 
De=5.2E-2 cm2/s  
Ke=7E-4 cal/s cm oK 
R=0.3 cm 
ρc=2.8E6 g/m3 

Sa=530 m2/g  
 
6.2 Physical Properties of the Bed 
 
εb=0.4  
ρb= ρc(1- εb) 
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6.3 Physical Properties of the Inlet Gas 
 
To=773 oK 
U=100cm/s  
CSO2=Cbo=1.6E-6 mol/cm3  
DAB=2.0E-8 m2/s  
 
6.4 Reaction Conditions 
 
∆H= 23100 cal/mol 
ko=4.42E-10 m/s  
 
6.5 Analytical Method Solving Isothermal Pellet 
 
function PelletDiffusion_AnalyticalSolution 
  
% Case study of 1.3.5 P33, Determine Thiele Number (sita in this case) 
De=5.2*10^(-2);  % cm^2/s 
R=0.3;   % cm 
To=500;  % Kelvin 
Rg=8.314;    % J/mol*K 
E= 2000;     % J/mol, approximated 
a=0.5;      % 1/s, approximated 
Sita=R*(1/De*(a*exp(-E/(Rg*To))))^0.5; 
  
% roots=[0,0.3,0.5,0.7,1]; 
roots=0:0.1:1; 
C=besseli(0,Sita*roots)/besseli(0,Sita); 
C 
plot(roots,C,'-r','LineWidth',2); 
  
%%%%%Effectiveness factor 
ef=2/Sita*besseli(1,Sita)/besseli(0,Sita); 
display(ef); 
 
6.6 Collocation Method Solving Non-Isothermal Pellet at steady state 
Main Program to Solve for Concentration/Temperature Profile and η 
 
function SolveDiffusion 
%%% Collocation Method to solve the diffusion equations.  
clear; 
clc; 
%%% Choose the  arbitrary and orthgoanal nodes    
%%% Compare the accuarrcy 
ReactorLength=1;    % m 
roots=[0,0.113,0.5,0.887,1].*ReactorLength; 
mark='--g.'; 
m=length(roots); 
  
%Initial Guess: 
x0=[0.8785 0.9213 0.9370 0.9553 1.0000 7.35 6.37 5.60 3.70 1.0000]; 
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%Definining Constants 
Co=1E-6  ;
To=773; 
De=5.2*10^(-2); % cm^2/s 
E= 5000;     % J/mol 
DeltaH=-96558;               %J/mol 
Ke=2.926e-5;                %W/m*K, heat conductivity 
beta=DeltaH*De*Co/(Ke*To); 
Rg=8.314;    % J/mol*K, gas constant 
gamma=E/(Rg*To); 
R=0.3;   % cm 
  
%Start Solving 2nd order differential equations with Residuals 
Minimized 
  
%options = optimset('Display','iter','Maxiter',150,'MaxFunEvals',1500); 
options = optimset('Display','iter','NonlEqnAlgorithm','gn'); 
x=fsolve(@diffusionfunction,x0,options,roots,Reaction_rate,To,Co) 
C=x(1:m); 
T=x(m+1:2*m); 
  
%Generate Plot for Concentration and Temperature Profile  
hold on 
plot(roots,C,'-b' LineWidth',2); ,'
xlabel('radius'); 
ylabel('concentration ratio'); 
legend ('Concentration'); 
plot(roots,T,'-r','linewidth',1); 
xlabel('radius'); 
ylabel('Temperature Ratio'); 
legend('Temperature'); 
hold off; 
  
%Integrate to get effectiveness factor 
tol=1e-6; 
trace=[]; 
EffectivenessFactor=quadl(@ReactionRateFunction,0,1,tol,trace,C,T,roots
,gamma); 
EffectivenessFactor 
  
%Define Reactions used in script above 
function f=ReactionRateFunction(t,C,T,roots,gamma) 
m=length(t); 
for i=1:m 
    a_Con=PolynomialFunction(t(i),C,roots); 
    a_Temp=PolynomialFunction(t(i),T,roots); 
    f(i)=3*t(i)^2*a_Con*exp(gamma*(1-1/a_Temp)); 
end; 
  
  
function f=PolynomialFunction(t,weight,roots) 
sum=0; 
order=length(roots); 
for i=1:order 
    sum=sum+weight(i)*getLagrangian(i,order,t,roots); 
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end; 
f=sum; 
Define Steady State Models used in the Main Program 
 
function f=Diffusionfunction(x,root,rate,To,Co) 
m=length(root); 
C=x(1:m); 
T=x(m+1:2*m); 
  
% Case study of 1.3.5 P33, Determine Thiele Number 
De=5.2*10^(-2); % cm^2/s 
R=0.3;   % cm 
To=773;  % Kelvin 
Rg=8.314;    % J/mol*K, gas constant 
E= 5000;     % J/mol 
a=0.5;      % 1/s 
Thiele=R*(1/De*(a*exp(-E/(Rg*To))))^0.5; 
  
% Case study of 1.3.5 P33, Determine beta and gamma value for 
temperature profile 
DeltaH=-96558;               %J/mol 
Co=1*10^(-6);   %Reference Concentration                
Ke=2.926e-5;                %W/m*K, heat conductivity 
beta=DeltaH*De*Co/(Ke*To); 
gamma=E/(Rg*To); 
  
f(1)=GetDiffusionFirstOrderDerivative(C,1,m,root); %% starting boundary 
dC/dx=0  
f(m)=C(m)-1; 
for i=2:m-1 
    f(i)=GetDiffusionSecondOrderDerivative(C,i,m,root)+... 
        2.0/root(i)*GetDiffusionFirstOrderDerivative(C,i,m,root)-
Thiele^2*exp(gamma*(1-1.0/T(i)))*C(i); %% interior points dC2/dx2=0 
end; 
  
f(1+m)=GetDiffusionFirstOrderDerivative(T,1,m,root); %% starting 
boundary dC/dx=0  
f(2*m)=T(m)-1;         %%%%% ending boundary C=1;  
for i=2:m-1; 
    f(i+m)=GetDiffusionSecondOrderDerivative(T,i,m,root)+... 
        2.0/root(i)*GetDiffusionFirstOrderDerivative(T,i,m,root)-
beta*exp(gamma*(1-1.0/T(i)))*C(i); %% interior points dC2/dx2=0 
end; 
  
%%%%%%%%%%%%%%%%%%%%%Frist order derivative for state variables y 
(dy/dx)%%%%%%%%%%%%%%%%%%% 
function 
f=GetDiffusionFirstOrderDerivative(weights,aNodeIndex,order,nodes) 
sum = 0; 
for i= 1 : order 
    d = getLagrangianDerivative(aNodeIndex,i,order,nodes); 
    sum = sum + d * weights(i); 
end; 
f = sum; 
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%%%%%%%%%%%%%%%%%%%%%Second order derivative for state variables y 
(dy2/dx2)%%%%%%%%%%%%%%%%%%% 
function 
f=GetDiffusionSecondOrderDerivative(weights,aNodeIndex,order,nodes) 
sum = 0; 
for i= 1 : order 
    d = getLagrangianSecondOrderDerivative(aNodeIndex,i,order,nodes); 
    sum = sum + d * weights(i); 
end; 
f = sum; 
  
%%%%%%%%%%%%%%%%%%%%%Second order derivative for laganrage polynomial 
L(x)%%%%%%%%%%%%%%%%%%% 
  
function 
la=getLagrangianSecondOrderDerivative(aNodeIndex,anOrderIndex,order,nod
es) 
 if (aNodeIndex == anOrderIndex)  
    xx=nodes(aNodeIndex); 
    
la=1.0/3.0*getThirdOrderDerivNodesPol(xx,order,nodes)/getFirstOrderDeri
vNodesPol(xx,order,nodes); 
    return; 
  end; 
  xj=nodes(aNodeIndex); 
  xi=nodes(anOrderIndex); 
  la = 1.0/(xj-
xi)*(getSecondOrderDerivNodesPol(xj,order,nodes)/getFirstOrderDerivNode
sPol(xi,order,nodes)... 
  -2.0*getLagrangianDerivative(aNodeIndex,anOrderIndex,order,nodes)); 
  
%%%%%%%%%%%%%%%%%%%%%Frist order derivative for laganrage polynomial 
L(x)%%%%%%%%%%%%%%%%%%% 
  
function 
la=getLagrangianDerivative(aNodeIndex,anOrderIndex,order,nodes) 
 if (aNodeIndex == anOrderIndex)  
    xx=nodes(aNodeIndex); 
    
la=1.0/2.0*getSecondOrderDerivNodesPol(xx,order,nodes)/getFirstOrderDer
ivNodesPol(xx,order,nodes); 
    return; 
  end; 
  xj=nodes(aNodeIndex); 
  xi=nodes(anOrderIndex); 
  la = 1.0/(xj-
xi)*getFirstOrderDerivNodesPol(xj,order,nodes)/getFirstOrderDerivNodesP
ol(xi,order,nodes); 
  
 %%%%%%%%%% Polynomials %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
function f=nodePolynomials(x,order,nodes) 
  enumerator  = 1.0; 
  if (order == 0) 
      f=1; 
      return; 
  end; 
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%     for i= 1 : order   
%       enumerator  = enumerator * ( x- nodes(i) ); 
%     end; 
    enumerator = (x-nodes(order))*nodePolynomials(x,order-1,nodes); 
    f = enumerator; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%for the derivative of nodes polynomials 
% 
function g=getFirstOrderDerivNodesPol(x,order,nodes) 
  if (order == 0) 
      g=0; 
      return; 
  end; 
      g=(x-nodes(order))*getFirstOrderDerivNodesPol(x,order-1,nodes) + 
nodePolynomials(x,order-1,nodes); 
%   g=(x-nodes(order))+nodePolynomials(x,order-1,nodes); 
  
function h=getSecondOrderDerivNodesPol(x,order,nodes) 
  if (order == 0) 
      h=0; 
      return; 
  end; 
  h=(x-nodes(order))*getSecondOrderDerivNodesPol(x,order-
1,nodes)+2.0*getFirstOrderDerivNodesPol(x,order-1,nodes); 
   
function h=getThirdOrderDerivNodesPol(x,order,nodes) 
  if (order == 0) 
      h=0; 
      return; 
  end; 
  h=(x-nodes(order))*getThirdOrderDerivNodesPol(x,order-
1,nodes)+3.0*getSecondOrderDerivNodesPol(x,order-1,nodes); 
  
Define the LaGrange Polynomial and its Derivatives 
 
function La=getLagrangian(aNodeIndex,order,x,root) 
 
    enumerator  = 1.0; 
    denominator = 1.0; 
    for i= 1 : order   
 
         if (i ~= aNodeIndex)  
            enumerator  = enumerator * ( x- root(i) ); 
            denominator = denominator * ( root(aNodeIndex) - root(i) ); 
         end; 
    end; 
La = enumerator/denominator; 
 
function la=getLagrangianDerivative(aNodeIndex,anOrderIndex,order,nodes) 
 if (aNodeIndex == anOrderIndex)  
    xx=nodes(aNodeIndex); 
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la=1.0/2.0*getSecondOrderDerivNodesPol(xx,order,nodes)/getFirstOrderDerivNodesPol
(xx,order,nodes); 
    return; 
  end; 
  xj=nodes(aNodeIndex); 
  xi=nodes(anOrderIndex); 
  la = 1.0/(xj-
xi)*getFirstOrderDerivNodesPol(xj,order,nodes)/getFirstOrderDerivNodesPol(xi,order,n
odes); 
 
 
function f=nodePolynomials(x,order,nodes) 
  enumerator  = 1.0; 
  if (order == 0) 
      f=1; 
      return; 
  end; 
%     for i= 1 : order   
%       enumerator  = enumerator * ( x- nodes(i) ); 
%     end; 
    enumerator = (x-nodes(order))*nodePolynomials(x,order-1,nodes); 
    f = enumerator; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% 
% 
%for the derivative of nodes polynomials 
% 
function g=getFirstOrderDerivNodesPol(x,order,nodes) 
  if (order == 0) 
      g=0; 
      return; 
  end; 
      g=(x-nodes(order))*getFirstOrderDerivNodesPol(x,order-1,nodes) + 
nodePolynomials(x,order-1,nodes); 
%   g=(x-nodes(order))+nodePolynomials(x,order-1,nodes); 
 
function h=getSecondOrderDerivNodesPol(x,order,nodes) 
  if (order == 0) 
      h=0; 
      return; 
  end; 
  h=(x-nodes(order))*getSecondOrderDerivNodesPol(x,order-
1,nodes)+2.0*getFirstOrderDerivNodesPol(x,order-1,nodes); 
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function 
la=getLagrangianSecondOrderDerivative(aNodeIndex,anOrderIndex,order,nodes) 
 if (aNodeIndex == anOrderIndex)  
    xx=nodes(aNodeIndex); 
    
la=1.0/3.0*getThirdOrderDerivNodesPol(xx,order,nodes)/getFirstOrderDerivNodesPol(x
x,order,nodes); 
    return; 
  end; 
  xj=nodes(aNodeIndex); 
  xi=nodes(anOrderIndex); 
  la = 1.0/(xj-
xi)*(getSecondOrderDerivNodesPol(xj,order,nodes)/getFirstOrderDerivNodesPol(xi,orde
r,nodes)... 
  -2.0*getLagrangianDerivative(aNodeIndex,anOrderIndex,order,nodes)); 
 
 
function la=getLagrangianDerivative(aNodeIndex,anOrderIndex,order,nodes) 
 if (aNodeIndex == anOrderIndex)  
    xx=nodes(aNodeIndex); 
    
la=1.0/2.0*getSecondOrderDerivNodesPol(xx,order,nodes)/getFirstOrderDerivNodesPol
(xx,order,nodes); 
    return; 
  end; 
  xj=nodes(aNodeIndex); 
  xi=nodes(anOrderIndex); 
  la = 1.0/(xj-
xi)*getFirstOrderDerivNodesPol(xj,order,nodes)/getFirstOrderDerivNodesPol(xi,order,n
odes); 
 
function f=nodePolynomials(x,order,nodes) 
  enumerator  = 1.0; 
  if (order == 0) 
      f=1; 
      return; 
  end; 
%     for i= 1 : order   
%       enumerator  = enumerator * ( x- nodes(i) ); 
%     end; 
    enumerator = (x-nodes(order))*nodePolynomials(x,order-1,nodes); 
    f = enumerator; 
 
6.7 Collocation Method Solving Non-Isothermal Pellet at dynamic state 
 
Main Program to Solve Concentration/Temperature Profile 
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function SolveDiffusion 
%%% Collocation Method to solve the diffusion equations.  
clear; 
clc; 
%%% Choose the  arbitrary and orthgoanal nodes    
%%% Compare the accuarrcy 
%roots=[0,0.3,0.5,0.7,1]; 
% roots=[0,0.113,0.5,0.887,1]; 
To=550; %This value corresponds to the value in "SolveDiffusion". 
Co=2.46e-4;% This value corresponds to the value in "SolveDiffusion". 
Reaction_rate=1e-5; 
ReactorLength=1;    % m 
roots=[0,0.113,0.5,0.887,1].*ReactorLength; 
m=length(roots); 
x0=[0 0 0 0 1 1 1 1 1 1]; 
%options = optimset('Display','iter');  
% x=fsolve(@diffusionfunction,x0,options,roots,Reaction_rate,To,Co); 
% C=x(1:m); 
% T=x(m+1:2*m); 
% plot(roots,C,'-rs'); 
% Plot(roots,T,'--g'); 
% x0(1:2*m)=1; 
% x0(m)=1; 
% x0(2*m)=1; 
options = odeset('RelTol',1e-4); 
[t,x]=ode45(@DynamicDiffusionfunction,[0,1],x0,options,roots,Reaction_rate,To,Co); 
C=x(:,1:m) 
T=x(:,m+1:2*m) 
t 
FinalTime=length(t) 
%plot(roots,x(FinalTime,:)); 
surf(C,roots,t); 
surf(T,roots,t); 
Define Dynamic Model used in the Main Program 
 
function dc=DynamicDiffusionfunction(t,x,root,rate,To,Co) 
f=Diffusionfunction(x,root,rate,To,Co); 
dc=f'; 
 
6.8 Testing Sensitivity of steady state η 
 
% function SolveDiffusion(roots,mark) 
function SolveDiffusion 
%%% 04/18/2005, Libin Zhang 
%%% Collocation Method to solve the diffusion equations.  
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clear; 
clc; 
 
%%% Choose the  arbitrary and orthgoanal nodes    
%%% Compare the accuarrcy 
% roots=[0,0.3,0.5,0.7,1]; 
ReactorLength=1;    % m 
roots=[0,0.113,0.5,0.887,1].*ReactorLength; 
mark='--g.'; 
Reaction_rate=1e-5;     %mol/(m^3*s) 
m=length(roots); 
 
%Initial Guess, sensitive to convergence 
x0=[0.8756    0.8772    0.9066    0.9736    1.0000   33.9194   33.5085   25.7212    7.9898    
1.0000]; 
 
%Start for loop for varying Co and To 
% k=0;     
% for Co=1E-6:5E-6:300E-6 
%     k=k+1; 
%     z=0; 
%     for To=100:50:1000 
%         z=z+1; 
         
% Start for loop for varying Reaction_rate 
% k=0; 
% for a=0.1:0.1:1 
%     k=k+1; 
 
% Start for loop for varying Ke 
% k=0; 
% for Ke=0.2926e-5:1e-5:12e-5  % W/m*K 
%     k=k+1; 
 
% Start for loop for varying De 
% k=0; 
% for De=1e-2:1e-2:12e-2 
%     k=k+1; 
 
%Definining Constants 
Co=2.46E-4; 
To=550; %Kelvin 
De=5.2*10^(-2); % cm^2/s 
E=5000;     % J/mol 
DeltaH=-96558;               %J/mol 
Ke=2.926e-5;                %W/m*K, heat conductivity 
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beta=DeltaH*De*Co/(Ke*To); 
Rg=8.314;    % J/mol*K, gas constant 
gamma=E/(Rg*To); 
R=0.3;   % cm 
a=0.5; 
 
%Start Solving 2nd order differential equations with Residuals Minimized 
 
%options = optimset('Display','iter','Maxiter',150,'MaxFunEvals',1500);  
options = optimset('Display','off','NonlEqnAlgorithm','gn'); 
x=fsolve(@diffusionfunction,x0,options,roots,Reaction_rate,To,Co,a,Ke,De,beta,gamma)
; 
C=x(1:m); 
T=x(m+1:2*m); 
 
%  
% r=0:0.1:1; 
% for i=1:length(r) 
%     y(i)=PolynomialFunction(r(i),C,roots); 
% end; 
% Generate Plot for Concentration and Temperature Profile  
%hold on 
%plot(r,y,'-b','LineWidth',2); 
%plot(roots,C,mark,'LineWidth',2); 
%plot(roots,T,'-r','linewidth',1); 
%hold off; 
 
%Integrate to get effectivess factor 
tol=1e-6; 
trace=[]; 
Factor=quadl(@ReactionRateFunction,0,1,tol,trace,C,T,roots,gamma); 
Factor 
 
%Store Values in different arrays 
% Array_To(k,z)=To 
% Array_Co(k,z)=Co 
% Array_a(1,k)=a; 
% Array_Ke(1,k)=Ke; 
% Array_De(1,k)=De; 
% Array_Factor(k,z)=Factor 
end; 
end; 
 
% save Co_data.dat Array_Co -ascii; 
% save To_data.dat Array_To -ascii; 
% save Factor_data.dat Array_Factor -ascii; 
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%Plot 3D surface, Co, To are varaibles, Factor is the result 
%surf(Array_beta,Array_gamma,Array_Factor); 
 
%Plot 2D plot, a/Ke/De as variable, factor is the result 
% plot(Array_Ke,Array_Factor); 
% XLABEL('Ke'); 
% YLABEL('Factor'); 
% legend ('Factor'); 
 
6.9 Generate Multiplicity Graph and Concentrations for each η 
Main Program 
 
function Caculate_EffetiveFactor 
clc; 
clear; 
roots=[0,0.113,0.5,0.887,1]; 
% roots=[0,0.4,0.8,1]; 
Beta=[0.6,0.4,0.3,0.2,0.1,0,-0.8]; 
%Beta=[0.6]; 
Gamma=30; 
InitialCon_1=logspace(-11,-3,10); 
InitialCon_2=logspace(-3,log10(0.5),15); 
InitialCon_3=1-logspace(log10(0.5),-3,15); 
 InitialCon=[1e-200,1e-100,1e-50,1e-25,InitialCon_1,InitialCon_2,InitialCon_3]; 
% InitialCon=linspace(0.8,0.87,20); 
% InitialCon=[0.0000000000160]; 
m=length(Beta); 
n=length(InitialCon); 
T_span=[0,10]; 
tol=1e-10; 
trace=[]; 
p1=1; 
 
options = odeset('AbsTol',1E-30,'RelTol',1e-9,'Event',@StopCondition); 
for i=1:m 
    for j=1:n 
        I_Factor=quadl(@ReactionFunction,0,1,tol,trace,Gamma,Beta(i)); 
        I_Factor=sqrt(2*I_Factor); 
        abs_tol=(1e-5)*InitialCon(j); 
        options = odeset('AbsTol',abs_tol,'RelTol',1e-9,'Event',@StopCondition); 
        xx0=[InitialCon(j),0]; 
        [t,x]=ode15s(@TransformDiffusionfunction,T_span,xx0,options,Gamma,Beta(i)); 
%         if exitflag~=1 
%            fprintf(1,'Waring: Does not convergence; exit flag= %3d\n',exitflag); 
%         end; 
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        No_Step=length(t); 
%         hold on 
         plot(t,x(:,1)); 
         xlabel ('radius'); 
         ylabel ('Scaled Concentration'); 
%         plot([0, t(No_Step)],[1,1],'--r'); 
%         hold off 
        a=t(No_Step)/3; 
        ThieleM=a*sqrt(p1) 
        Con_Deriv_surface=x(No_Step,2); 
        factor=a*Con_Deriv_surface/(ThieleM^2); 
        Thiele_M(i,j)=ThieleM/I_Factor; 
        EFactor_M(i,j)= factor 
    end; 
     
end; 
figure 
save Thiele_Data.dat Thiele_M -ascii; 
save EFactor_Data.dat EFactor_M -ascii; 
load Thiele_Data.dat; 
load EFactor_Data.dat; 
Thiele_M=Thiele_Data; 
EFactor_M=EFactor_Data; 
pts=[0.001 1000 0.01 0.2; 
     10    0.1  0.01 500]; 
loglog(Thiele_M',EFactor_M','r*'); 
hold on 
loglog(pts(:,1)',pts(:,2)','--g'); 
loglog(pts(:,3)',pts(:,4)','--g'); 
 
hold off 
axis([1e-4 10 0.1 1000]); 
% plot(Thiele_M',EFactor_M','-r*'); 
% axis([0.76 0.92 0.8 5]); 
 
function f=ReactionFunction(c,Gamma,beta) 
f=c.*exp(Gamma*beta*(1-c)./(1+beta*(1-c))); 
 
Define Functions used in Main Program 
 
function dy=TransformDiffusionfunction(t,y,varargin) 
Gamma=varargin{1};Beta=varargin{2}; 
C=y(1); 
DCDt=y(2); 
f(1)=DCDt; %% starting boundary  
if (t==0) 
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    f(2)=1/3*C*exp(Gamma*Beta*(1-C)/(1+Beta*(1-C))); 
else 
    f(2)=-2/t*DCDt+C*exp(Gamma*Beta*(1-C)/(1+Beta*(1-C))); %% interior points 
dC2/dx2=0 
end 
dy=f'; 
 
function [value,isterminal,direction]=StopCondition(t,y,varargin) 
Gamma=varargin{1};Beta=varargin{2}; 
value(1)=1.0-y(1); 
isterminal(1) = 1; 
direction(1) = 0; 
 
 
6.10 Solve Steady State Reactor Concentrations and Temperature Profile 
 
Main Program 
% function SolveDiffusion(roots,mark) 
function SolveDiffusion 
%warning off MATLAB:nearlySingularMatrix 
%%% Collocation Method to solve the diffusion equations.  
clear; 
clc; 
 
ReactorLength=1;    % m 
roots=[0,0.113,0.5,0.887,1].*ReactorLength; 
%roots=[0,0.113,0.5,0.887,1].*ReactorLength; 
 
mark='--g.'; 
%Reaction_rate=1e-5;     %mol/(m^3*s) 
m=length(roots); 
% x0(1:2*m)=0.5 
 
% xr0=[1  0.5   0.4   0.3   0.2   0.1     0.05   1   1.01    1.05    1.06  1.07   0.1  1.15];    
% xr0=[1.0000 0.1285 0.0507 0.0204 0.0103 0.0092 1.0000 1.2617 1.3130 1.3087 
1.3180 1.3900]; 
xr0=[1  0.5   0.4   0.3   0.05   1   1.01    1.05  0.1  1.15]; 
%Definining Constants 
To=300;          %K 
Co=1E-2;        %mol/cm^2       %K 
De=5.2*10^(-6); % cm^2/s 
E=5000;     % J/mol 
DeltaH=-96558*100;               %J/mol 
U=1E-3;     %m/s, Superficial velocity 
Sa=580000*0.025;            % m^2/kg, used P764 Fogler case study 
Dab=0.00655;                %m^2/s 
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rowg=4.57E-1;          %kg/m^3 
rowb=1400;           % kg/m^3 
Cp=1.0032e+003;                    % for gas, J/kg*K 
ko=4.42E-10;          % Reference reaction rate 
Kb=0.0384;       % W/(m*K) 
%Kb=2.926e-5; 
R=0.003;   % cm 
Rg=8.314;    % J/mol*K, gas constant 
a=1.4280;      % 1/s   
Ke=2.926e-5;                %W/m*K, heat conductivity 
 
% k=0; 
% for To=270:30:400 
%     k=k+1; 
    beta=DeltaH*De*Co/(Ke*To); 
    gamma=E/(Rg*To); 
    options = optimset('Display','iter','NonlEqnAlgorithm','gn'); 
    xr=fsolve(@DiffusionCoupled,xr0,options,roots,To,Co,beta,gamma) 
%     %Co(k,:)=Co; 
%     To(k,:)=To; 
%     Cr(k,:)=xr(1:m); 
%     Tr(k,:)=xr(m+1:2*m); 
% end; 
Cr=xr(1:m); 
Tr=xr(m+1:2*m); 
 
figure 
hold on 
plot(roots,Cr(1,:),'-r','linewidth',2); 
% plot(roots,Cr(2,:),'-b','linewidth',2); 
% plot(roots,Cr(3,:),'-g','linewidth',2); 
% plot(roots,Cr(4,:),'-c','linewidth',2); 
% plot(roots,Cr(5,:),'-m','linewidth',2); 
% legend('Ti=270K','Ti=300K','Ti=330K','Ti=360K','Ti=390K'); 
xlabel('length of reactor'); 
ylabel('Scaled Concentration'); 
hold off 
 
figure 
hold on 
plot(roots,Tr(1,:),'--r','linewidth',2); 
% plot(roots,Tr(2,:),'--b','linewidth',2); 
% plot(roots,Tr(3,:),'--g','linewidth',2); 
% plot(roots,Tr(4,:),'--c','linewidth',2); 
% plot(roots,Tr(5,:),'--m','linewidth',2); 
% legend('Ti=270K','Ti=300K','Ti=330K','Ti=360K','Ti=390K'); 

 41



xlabel('length of reactor'); 
ylabel('Scaled Temperature'); 
hold off 
 
Define functions used above 
 
unction f=DiffusionCoupled(xr0,root,To,Co,beta,gamma) 
 
m=length(root); 
Cr=xr0(1:m); 
Tr=xr0(m+1:2*m); 
 
%Define All the Varaibles 
 
% To=300;          %K 
% Co=1E-2;        %mol/cm^2       %K 
De=5.2*10^(-6); % cm^2/s 
E=5000;     % J/mol 
DeltaH=-96558*100;               %J/mol 
U=1E-3;     %m/s, Superficial velocity 
Sa=580000*0.025;            % m^2/kg, used P764 Fogler case study 
Dab=0.00655;                %m^2/s 
rowg=4.57E-1;          %kg/m^3 
rowb=1400;           % kg/m^3 
Cp=1.0032e+003;                    % for gas, J/kg*K 
ko=4.42E-10;          % Reference reaction rate 
Kb=0.0384;       % W/(m*K) 
%Kb=2.926e-5; 
R=0.003;   % cm 
Rg=8.314;    % J/mol*K, gas constant 
a=1.4280;      % 1/s   
Ke=2.926e-5;                %W/m*K, heat conductivity 
Thiele=R*(1/De*(a*exp(-E/(Rg*To))))^0.5; 
Bio=1; 
beta=DeltaH*De*Co/(Ke*To); 
gamma=E/(Rg*To); 
 
% Getting effectiveness factor 
%xx0=[0.8756    0.8772    0.9066    0.9736    1.0000   0.85   0.87   0.95    0.97    1.0000]; 
 
%options = optimset('Display','iter','NonlEqnAlgorithm','gn'); 
options=optimset('Display','iter'); 
for i=2:m-1 
    %avg_theta(i)=(Tr(i)*To+To)/2; 
    avg_theta(i)=Tr(i); 
    Thiele1(i)=(Thiele^2*exp(gamma*(1-1/avg_theta(i))))^0.5; 
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% xx=fsolve(@Diffusionfunction,xx0,options,root,a,Tr(i),Cr(i)); 
%xx=MatSolNewt(xx0,3,'Diffusionfunction'); 
% P_C=xx(1:m); 
% P_T=xx(m+1:2*m); 
% xx0=xx; 
% tol=1e-6; 
% trace=[]; 
% Factor(i)=quadl(@ReactionRateFunction,0,1,tol,trace,P_C,P_T,root,gamma); 
Factor(i)=3*Bio/(Thiele1(i)^2)*(Thiele1(i)*coth(Thiele1(i))-
1)/(Thiele1(i)*coth(Thiele1(i))+Bio-1); 
end; 
Factor; 
 
% Concentration Profile For a Reactor (Dimensionless) 
f(1)=Cr(1)-1; % starting boundary, Cr(z=0)=Co 
f(m)=GetDiffusionFirstOrderDerivative(Cr,m,m,root); 
for i=2:m-1 
    f(i)=GetDiffusionSecondOrderDerivative(Cr,i,m,root)-... 
        U/Dab*GetDiffusionFirstOrderDerivative(Cr,i,m,root)-
rowb*Factor(i)*Sa/Dab*Cr(i)*ko*exp(gamma*(1-1/Tr(i))); %% interior points 
dC2/dx2=0 
end; 
 
%Temperature Profile For a Reactor (Dimensionless) 
f(m+1)=Tr(1)-1;         %%%%% ending boundary C=1;  
f(2*m)=GetDiffusionFirstOrderDerivative(Tr,m,m,root); %% starting boundary dT/dx=0  
for i=2:m-1; 
    f(i+m)=GetDiffusionSecondOrderDerivative(Tr,i,m,root)-... 
        rowg*Cp*U/Kb*GetDiffusionFirstOrderDerivative(Tr,i,m,root)-
rowb*DeltaH*Factor(i)*Sa/Kb*Cr(i)*Co/To*ko*exp(gamma*(1-1/Tr(i)))... 
        -4*1*(Tr(i)-1)*To; %% interior points dC2/dx2=0 
end; 
 
6.11 Solve Dynamic Reactor Concentration and Temperature Profile 
 
Main Program 
 
function SolveDiffusion 
%%% 04/18/2005, Libin Zhang 
%%% Collocation Method to solve the diffusion equations.  
clear; 
clc; 
%%% Choose the  arbitrary and orthgoanal nodes    
%%% Compare the accuarrcy 
%roots=[0,0.3,0.5,0.7,1]; 
% roots=[0,0.113,0.5,0.887,1]; 
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To=550; %This value corresponds to the value in "SolveDiffusion". 
Co=4e-4;% This value corresponds to the value in "SolveDiffusion". 
Reaction_rate=1e-5; 
ReactorLength=1;    % m 
roots=[0,0.113,0.5,0.887,1].*ReactorLength; 
m=length(roots); 
x0=[0.8756    0.8772    0.9066    0.9736    1.0000   33.9194   33.5085   25.7212    7.9898    
1.0000]; 
%options = optimset('Display','iter');  
% x=fsolve(@diffusionfunction,x0,options,roots,Reaction_rate,To,Co); 
% C=x(1:m); 
% T=x(m+1:2*m); 
% plot(roots,C,'-rs'); 
% Plot(roots,T,'--g'); 
% x0(1:2*m)=1; 
% x0(m)=1; 
% x0(2*m)=1; 
options = odeset('RelTol',1e-4); 
[t,x]=ode45(@DynamicDiffusionfunction,[0,1],x0,options,roots,Reaction_rate,To,Co); 
C=x(:,1:m) 
T=x(:,m+1:2*m) 
t 
FinalTime=length(t) 
 
hold on; 
plot(t,C(:,1),'--r'); 
plot(t,C(:,2),'-b'); 
plot(t,C(:,3),'k+:'); 
plot(t,C(:,4),'rx:'); 
plot(t,C(:,5),'-g*'); 
XLABEL ('TIME'); 
YLABEL ('CONCENTRATION'); 
legend ('r=0','r=0.113','r=0.5','r=0.887','r=1'); 
hold off; 
 
% hold on; 
% plot(t,T(:,1),'--r'); 
% plot(t,T(:,2),'-b'); 
% plot(t,T(:,3),'k+:'); 
% plot(t,T(:,4),'rx:'); 
% plot(t,T(:,5),'-g*'); 
% XLABEL ('TIME'); 
% YLABEL ('TEMPERATURE'); 
% legend ('r=0','r=0.113','r=0.5','r=0.887','r=1'); 
% hold off; 
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Define Functions used Above 
 
function dc=DynamicDiffusionfunction(t,x,root,rate,To,Co) 
f=Diffusionfunction(x,root,rate,To,Co); 
dc=f'; 
 
6.12 Generate Hotspot and Testing Hotspot Sensitivity 
 
Main Program 
 
function Solve_OneD_Convection_Reator 
clc; 
clear; 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
C=1; 
T=1; 
x0=[C,T]'; 
zspan=[0,1]; 
options=odeset('RelTol',1e-4); 
[z,x]=ode15s('OneDimensionReactor',zspan,x0,options); 
C=x(:,1)' 
T=x(:,2)' 
%  
% figure 
% hold on 
% plot(z,C,'-ob'); 
% xlabel('length of reactor'); 
% ylabel('scaled concentration'); 
% hold off 
 
%figure 
hold on 
plot(z,T,'-*r'); 
xlabel('length of reactor'); 
ylabel('scaled temperature'); 
hold off 
 
end; 
 
Define Functions above 
 
function f=OneDimensionReactor(t,x) 
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To=300;          %K 
Co=1E-2;        %mol/cm^2       %K 
C=x(1); 
T=x(2); 
De=5.2*10^(-6); % cm^2/s 
E=5000;     % J/mol 
DeltaH=-96558*100;               %J/mol 
U=1E-3;     %m/s, Superficial velocity 
Sa=580000*0.025;            % m^2/kg, used P764 Fogler case study 
Dab=0.00655;                %m^2/s 
rowg=4.57E-1;          %kg/m^3 
rowb=1400;           % kg/m^3 
Cp=1.0032e+003;                    % for gas, J/kg*K 
ko=4.42E-10*0.9;          % Reference reaction rate, m^3/(m^2*s) 
Kb=0.0384;       % W/(m*K) 
%Kb=2.926e-5; 
R=0.003;   % m 
Rg=8.314;    % J/mol*K, gas constant 
a=1.4280;      % 1/s   
Ke=2.926e-5;                %W/m*K, heat conductivity 
 
 
%beta=DeltaH*De*Co/(Ke*To); 
beta=DeltaH*De*Co/(Ke*To); 
gamma=E/(Rg*To); 
Thiele=R*(1/De*(a*exp(-E/(Rg*To))))^0.5; 
Bio=0.5; 
Thiele1=(Thiele^2*exp(gamma*(1-1/T)))^0.5; 
 
 
Factor=3*Bio/(Thiele1^2)*(Thiele1*coth(Thiele1)-1)/(Thiele1*coth(Thiele1)+Bio-1); 
ff(1)=-rowb*Factor*Sa*C*ko/U*exp(gamma*(1-1/T)); 
%ff(2)=-Kb/rowg/Cp/U*rowb*DeltaH*Factor*Sa/Kb*C*Co/To*ko*exp(gamma*(1-
1/T))-4*0.001*(T-To); 
%ff(2)=-1/rowg/Cp/U*rowb*DeltaH*Factor*Sa*C*Co/To*ko*exp(gamma*(1-1/T))-
4*0.001*(T-To); 
ff(2)=-DeltaH*Factor*Sa*rowb*Co/(To*Cp*U*rowg)*C*ko*exp(gamma*(1-1/T))-
4*0.01*(T-1)*To; 
f=ff'; 
 
6.13 Generate Dynamic Hotspot 
 
Use the same program to solve dynamic reactor, implement specific effectiveness factor, 
instead of solving it. 
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