Optimization of Surface Passivation for InAs-GaSb Infrared Photodetectors

2008 NSF REU Summer Program

Emily Meyer July 31, 2008

Overview

- Introduction
- Theory & Principles
- Apparatus & Experimental
- Results & Discussion
- Conclusion
- Acknowledgements

Medical:

•Temperature measurements that is non-invasive

•Diagnosis early on of health threats

Thermal analysis of a hand

Night vision: •Police •Military •Driving

Thermal analysis of a suspected marijuana grow house

Manufacturing:

Maintenance through thermal identificationDetecting general temperature uniformity

Thermal analysis of a fluid tank level detection

Introduction: Semiconductor Material

Introduction: Long Wavelength Infrared (LWIR)

Transmission of Air

Theory & Principles: Passivation

•Dangling bonds at the edges of the broken crystal structure leave the semiconductor open to contaminants

•To reduce the effects of contamination such as increased dark current and noise, a thin film passivation layer is applied to the semiconductor

Potential Passivants: Qualities of Passivants

•Must be a good insulator so must have higher bandgap and resistivity

•To avoid stress at the interface of the passivant and semiconductor, they should have similar linear thermal expansion coefficients

•To minimize the electric field that is produced in the passivation layer materials with high dielectric constants are considered

•Desire a material with a refractive index that is not too large nor too small

Potential Passivants: Parameters

Parameters	Si ₃ N ₄	SiO ₂	ZnS	InAs-GaSb
Bandgap (eV)	~ 5	9	3.68	<0.31
DC Resistivity Index @ 25°C (Ω - cm)	~ 10 ¹⁴	10 ¹⁴ -10 ¹⁶	10 ¹⁴	Dependent on Doping
Linear coefficient of thermal expansion (10 ⁻⁶ -°C ⁻¹)	3.3	50	7.089	5.24-8.87
Dielectric Constant	7.5	3.9	8.9	15.15-15.69
Refractive Index	2.05	1.46	2.368	3.65-4.05

Apparatus & Experimental: Deposition Techniques

Passivation Materials	Si _x N _y	SiO ₂	ZnS
Deposition technique	RF Magnetron sputtering	PECVD (Plasma Enhanced Chemical Vapor Deposition)	E-Beam
Temperature (°C)	Room Temperature	300	Room Temperature
Deposition time (minutes)	90	10	~ 90
Thickness (Å)	~3000-3500	3200	3000

•With the ZnS an aqueous layer of $(NH_4)_2S$ is applied to the semiconductor before the ZnS layer is applied to reduce surface leakage current.

•Device soaked in 20-24% aqueous $(NH_4)_2$ S for 15 minutes

Apparatus & Experimental: Schematic

Apparatus & Experimental: Measurements

Material Characterization

- •1/f Noise
- •Current

Device Characterization

•Dark Current

•Dynamic Resistance Multiplied by Area (R_dA)

Results: Material Characteristic

Results: Material Characteristic

Surface Current

Based on relationship of V = IR, the lower the current the higher the surface resistance.

Higher surface resistance will result in the majority of the current to be carried through the bulk of the material and therefore loose less current to surface leakage.

	Unpassivated	ZnS	Si _x N _y	SiO ₂
Dark current density at - 0.5 V (A-cm ⁻²)	1.93	1.11×10 ⁻²	1.87×10 ⁻¹	9.02×10 ⁻¹
R _o A (ohm-cm ²)	7.21×10 ⁻¹	4.92×10 ²	4.1	6.58×10 ⁻¹

Conclusion

•ZnS performed the best out of the three passivants both in terms of material and device characterization.

•Si_xN_y showed some improvement across the device in terms of R_0A but not as significantly as the ZnS.

•SiO₂ showed little improvement from the unpassivated device nor did it perform the best out of the three in material characterization.

Acknowledgements

National Science Foundation (NSF) NSF-EEC 0755115 NSF-CMS 0731730

Department of Defense (DoD)

Dr Takoudis, REU Director

Dr Jursich, REU Co-Director

Dr Ghosh

Koushik Banerjee

Yi Yang