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ABSTRACT 

Percolation is the study of random networks and their nature of connectivity. An 

exponential relationship between the percolation threshold and the aspect ratio of a 

shape is observed within this paper. Matlab simulations and a novel experimental 

method is utilized to determine the percolation threshold across a conductive sheet as 

triangles of variable aspect ratios are cut with a Universal Laser System X2-600 100 

Watt CO2 laser. Resistance is measured as a voltage of 100mV is applied across the 

conductive sheet of aluminum coated Mylar film. This data is then analyzed to yield the 

percolation threshold relating to a triangle with a specified aspect ratio. We establish an 

equilateral triangle to have an aspect ratio of one.  

 

INTRODUCTION 

Percolation Theory studies random networks and their nature of connectivity [5]. 

Envision a compressed cube of particles, blocking off a source of water. One particle is 

randomly removed at a time, percolating the cube. The percolation threshold 𝑃𝐶 is met 

when a path opens up such that the water is permitted to flow.  

We investigate the percolating network of triangles of various aspect ratios being cut 

across a conductive sheet, with electrical current as the medium flowing across the 



network. Previously, the relationship of an ellipse’s aspect ratio to the percolation 

threshold has been established both experimentally and theoretically as pc =

e−πabncwhere nc is the hole density per unit volume at the percolation threshold, and 
b

a
 is 

the aspect ratio of the ellipse [1][2]. The a and b depict the upper and lower range of the 

ellipse’s diameters. 

Triangles also have an upper and lower range of diameters. Given the same range, 

ellipses and triangles have a different distribution of diameters, given their different 

shapes. In addition, aspect ratios are defined differently. For an ellipse, an aspect ratio 

of 1 indicates a circle. For a triangle, an aspect ratio of 1 is used to represent and 

equilateral triangle. Formulaically, an aspect ratio 𝑅𝑇 for triangles of height h and base b 

is defined as follows: 

 𝑅𝑇 =  
h

b√3
   (1) 

This differs from the simple 
b

a
 indicating the aspect ratio for both rectangles and ellipses. 

 

METHODS 

Overview 

To generate data, a Matlab program is utilized to generate an AutoCAD script file, which 

is then used to guide a Universal Laser System X2-600 100 Watt CO2 laser. The laser 

cuts shapes out of a sheet of aluminum coated Mylar film, and current is measured 

across the sheet as each cut is made. Over time, cuts are made within the percolation 



area. When current can no longer flow across the sheet, it is said the percolation 

threshold has been met. 

Matlab Algorithm 

The Matlab code geometrically defines the AutoCAD file. The benefit to utilizing this 

method is that pseudo-random figures may be generated, and all drawings may be 

precisely automated. The percolation area is defined with width W and height H, 

forming a W by H rectangle. Within this rectangle, triangles with a defined aspect ratio 

are generated [2]. Formula (1) indicates the relationship between base b and height h to 

the aspect ratio 𝑅𝑇 of a triangle, which defines the aspect ratio of an equilateral triangle 

to be one. This formula can then be combined with the formula for triangle area 𝐴 =
𝑏 ℎ

2
 

resulting in a formula for base and height of a triangle, given a fixed area A and an 

aspect ratio 𝑅𝑇.  

b = √
2A

R√3
  (2) 

h =  bR√3  (3) 

The vector depicting the vertices of the oriented triangle are centered around uniformly 

distributed pseudo-random x and y coordinates. This vector is then put through a 

rotation matrix with a pseudo-randomly generated angle, theta. The result is a list of 

vertices depicts a triangle with random location and orientation. 

Next, the triangles are drawn within the defined percolation area. If the triangle does 

not intersect the edges of the percolation area, it is simply drawn. However, if an 

intersection exists, the triangle must be drawn as a polygon including the edges of the 



percolation area. The intersection points are determined with knowledge of the two 

vertices they are in between. The first intersection point is added to a vector that defines 

the polygon’s coordinates. Next, the vertex surrounding the first intersection that is 

inside the box is added. If two points are in the box, then the second point within the 

box is added. Finally the second intersection point is added. If the triangle is on a corner 

of the box, the corner point is added at the end. 

As each triangle is drawn, the loss of area is calculated. Once area in the percolation 

sheet is reduced by a threshold value of 0.5 percent, a strip of equivalent area is 

removed from another part of the conductive sheet. The loss of area is determined by a 

matrix of nodes, to represent whether or not that area has been previously removed. The 

matrix of nodes is further used to label clusters; when one cluster contains a node from 

each edge of the percolation area, the percolation threshold is met. 

Setup 

The experimental setup utilizes electrical properties of a thin conductive sheet to 

determine if the percolation threshold has been met. Each setup holds two samples to be 

percolated. The base providing structure to the setup consists of an aluminum base, with 

thirty-six holes drilled and threaded for 4-40 screws. The aluminum base is sandblasted, 

to remove its inherently reflective surface; this protects the laser and its lenses from 

damage. Nylon screws are utilized to prevent a short circuit from the sample to the 

aluminum base. Atop the aluminum base, two adhesive strips of double-sided masking 

tape are placed between the screw rows. To this, paper is attached to further protect the 

aluminum base from laser damage, so that it may be reused. After two layers of standard 

printing paper, a conductive sheet of aluminum coated Mylar film is attached. This 



conductive sheet is previously adhered to a strip of the double-sided masking tape 

carefully such that few surface imperfections exist. 

 

Figure 1: AutoCAD representation of the experimental setup. The exterior blue border indicates the area 

occupied by the sandblasted aluminum base. The green lines show the upper and lower boundaries of 

the two conductive strips, each holding a sample. These green lines are also utilized to guide the laser to 

trim the aluminum coated Mylar film, such that no path exists above or below the percolation area for 



current to flow. The purple rectangles depict the acrylic fasteners, each with two holes for screws. The 

cyan stripes along each edge of the acrylic fasteners are rasterized areas, to provide an indent for the 

brass rods. The triangles in this figure are enlarged for illustration. 

 

After the base has been adhered to both paper and conductive sheet, the laser is used to 

trim the aluminum coated Mylar film. To cut the Mylar film, a speed of 100% (appx. 0.5 

m/s) and a power of 40% (i.e. 40 Watts) is used. This eliminates any possible path above 

or below the percolation area for current to flow. Next, acrylic fasteners held by two 

screws each are placed atop two brass rods. The brass rods surround each area across 

which a voltage is applied, and resistance is measured. 

Each run consists of an area with triangles, and an area with strips. Resistance is 

measured across each area. As a significant amount of area is removed from the triangle 

area, an equivalent amount of area is removed from the side with strips. This allows the 

removal of triangles over time to relate to the amount of area lost. The point of time 

where current can no longer flow across the triangularly cut area effectively coincides 

with the time the stripped area is a certain resistance. Resistance across the stripped 

area may be related to the amount of area removed, by utilizing a formula for sheet 

resistance. 

 

RESULTS 

Data is gathered from both Matlab simulations and the experimental setup previously 

described. A sample of the resistance measured over time can be seen in Figure 2. Figure 

3 illustrates the triangular area being cut. Initially, the resistance is finite (typically ~3Ω), 



indicating that there is a path for current to flow across. When the resistance is no 

longer finite and current may no longer flow across the sheet, the resistance values 

become noise. The point in time at which this occurs coincides with the striped side, 

whose resistance over time is graphed in Figure 4. The resistance plateauing in Figure 4 

simply indicates that no more area is being removed, despite continuous measurements. 

As can be seen, the resistance of the striped area smoothly increases. This easily relates 

the amount of area removed, and therefore the percolation threshold 𝑃𝐶. 

 

Figure 2: Sample of data gathered across a percolating system. 



 

Figure 3: Sample of data gathered across a percolating system. 



 

Figure 4: Sample of data gathered across a percolating system. 



After gathering the percolation thresholds for various aspect ratios from these 

measurements, they are plotted in Figure 5 alongside the data gathered from 

simulations. The blue indicates the simulated data, while the red asterisks indicate 

experimental data. There are six relevant experimental data points; the remainder of the 

data was determined to be unusable due to experimental error. 

 

Figure 5: The data here is a compilation of data relating the percolation threshold, Pc and the Aspect 

ratio of a Triangle, where an equilateral triangle sets the base aspect ratio of 1.  In blue, data simulated 

by Matlab is shown. For each mean value point, a hundred data values are used. The error bars are the 

standard deviation of these values. The fitted exponential curve is similar to previously established data, 

and the experimental data points gathered appear to show a similar trend. 
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Experimental error was determined to be largely due to the areas of the triangles used. 

Figure 6 consists of two simulated runs of data, named A and B. Column A consists of 

the means acquired after a hundred runs of data with triangles of area of 11.1613µm, 

while Column B consists of the means acquired after ten runs of data with triangles with 

an area of 1.2903µm. The standard deviations of B are significantly smaller than that of 

A. This indicates that smaller triangles do indeed result in less error. 

Aspect Ratio Ellipses Rectangles A STD (A) B STD (B) C STD(C)  

1.0000 0.351 0.498 0.5450 0.0435 0.5747 0.0202 0.5303 0.0190 

0.7000 0.392 0.533 0.5632 0.0421 

    0.6000 0.414 0.492 0.5599 0.0451 

    0.5000 

  

0.5798 0.0502 

    0.4000 

  

0.6001 0.0477 0.6334 0.0290 0.5732 0.0256 

0.2500 0.588 0.563 0.6541 0.0507 

    0.1500 

  

0.7265 0.0420 

    0.1000 0.723 0.697 0.7727 0.0366 

    0.0500 

  

0.8292 0.0333 0.7144 0.0206 0.8653 0.0860 

0.0250 

  

0.8581 0.0278 

    0.0125 0.923 0.969 0.8516 0.0386 

    Figure 6: Data of percolation thresholds in relation to Aspect Ratio, with standard deviations. Data for 

Ellipses [2] and Rectangles [4] was gathered by Feinerman et al, while column A consists of the means 

from a hundred simulated runs of triangles with area of 11.1613µm, and column B consists of the means 

from ten simulated runs of triangles with area of 1.2903µm.  Column C consists of means from two 

experimental runs of data. 



 
Column C of Figure 6 consists of means from two experimental runs of data, where 

triangles had an area of 2.5161µm. The trend gathered through the theoretical and the 

experimental runs follow the similar exponential relationships. With additional data, it 

is expected that the relationship could be established to be identical.   

 

DISCUSSION 

The exponential relationship observed in the final data has previously been observed [1], 

so it is expected that additional data and analysis could render a definitive formula 

relating geometric features to the percolation threshold across a network, percolated 

with various shapes. This may relate to a probability of possible length cut across the 

primary orthogonal directions of a sample. Shapes with high aspect ratios tend to be like 

circles or oriented squares in that they provide a relatively consistent length to be 

removed in these primary directions, whereas shapes with low aspect ratios tend to 

behave more like line segments when percolating across a network. 

Possible error, apart from error resulting from triangle area as previously mentioned, 

may have originated from various different sources. The random nature of the system 

introduced some error; truly random values were not utilized, but instead evenly 

distributed pseudorandom values generated by Matlab. The kerf size of the laser cut 

introduced additional error in experimental data. The kerf of the laser varied with 

different geometric figures, and therefore the area removed by the kerf cut was not 

properly determined per aspect ratio. Lastly, contact resistance due to surface 

imperfections and contaminants likely introduced some error: The initial resistances 

across samples were not consistent, indicating that contact resistance may have been 



significant. To prevent this in the future, alternative methods for measuring sheet 

resistance—such as a four-point probe—could be utilized to measure the sheet resistance 

across the striped area of the sample.   

 

CONCLUSIONS 

Further work should be done to establish a concrete formula depicting the exponential 

relationship between the percolation threshold and different geometries. This geometric 

difference is likely what causes the variations in the relationships between the 

percolation thresholds and aspect ratios, for varying shapes. Future geometric 

exploration could be to double these triangles with varying aspect ratios, e.g. double an 

equilateral triangle into an equilateral rhombus.  
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