Engineering Research in Undergraduate Studies: Neural Engineering

Jaime McCoin – Washington University in St. Louis Amin Farokhrani – University of Michigan University of Illinois, Chicago Summer 2005

<u>Acknowledgements</u>

- Would like to thank:
 - Dr. David Schneeweis, UIC Neuro-engineering
 - Sujata Sundara-Rajan, Graduate Student Mentor
 - Dr. Takoudis, Dr. Linninger; REU Program Directors
 - NSF EEC-0453432 Grant, Novel Materials and Processing in Chemical and Biomedical Engineering

Presentation Overview

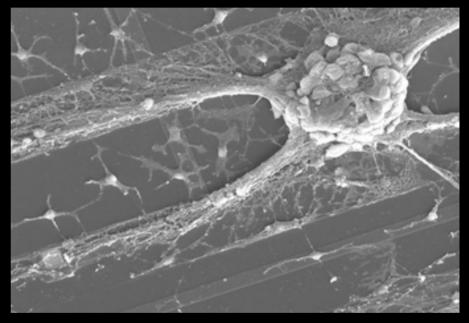
- Overview of 10 week research

Results with Images

– Final Conclusions

– Remaining Issues

Original Project Goals: Micropatterning


• Silicon Molds

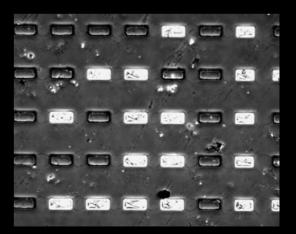
- Rubber-like PDMS stamps with microsized features
- Stamps "inked" with protein

Patterns of protein on glass slides

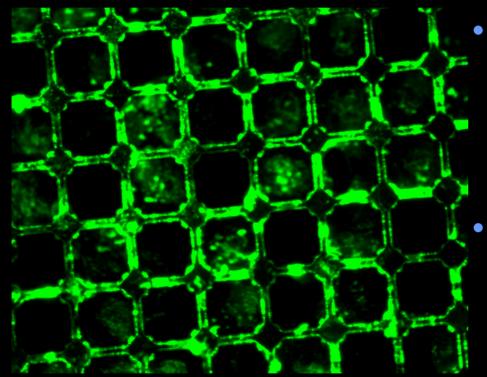
Motivation for Research

- Develop substrate with micropatterned proteins
- Surface induces living neurons, cells to grow into and interact with substrate
- Optimizing "interface"

B. Wheeler. http://soma.npa.uiuc.ed u/labs/wheeler/home.ht ml, 2005.


Obstacles Encountered

- Set out to find "optimal protocol" for
 - Making Stamps
 - Inking Stamps with Protein
 - Transferring protein to glass substrates
- Experienced difficulties at every step of the process


Obstacle: Making Stamps

- Air bubbles
 - Trapped at relief surface
 - Trapped within stamp body
- Missing Features
 - Pattern not complete
- Stamp surface unclean
 - Too much contamination

Obstacle: Inking Stamps

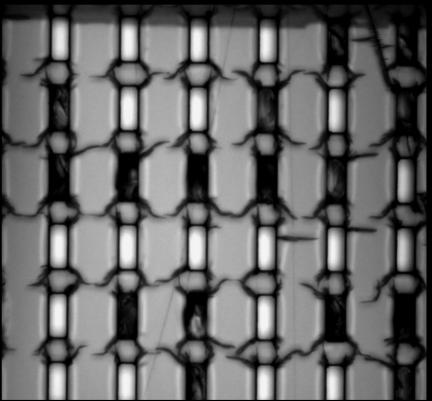
- Surface too hydrophobic to adsorb protein
- Protein adsorbs in inconsistent patches, uneven thickness

*10x magnification, 20 um features

Obstacle: Stamping Substrates

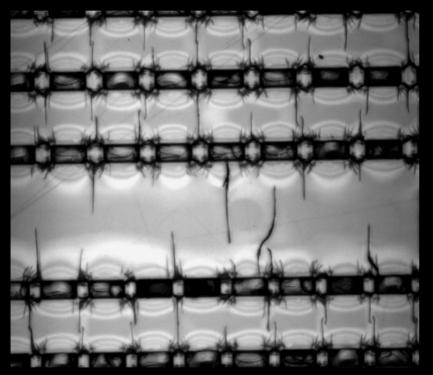
- Protein does not transfer to substrate in any visible quantity
 - No results can be shown

*Note: Have only limited trials with stamping


Obstacle: Most Problematic

 Stamp quality continued to decline, though were "improving" process

- Molds themselves were degraded with use
 - Unable to make new molds, hindered progress


Obstacle: Mold Degradation

- Molds became "dirty" over time
 - Pattern depressions filled with unknown material
 - Could not be cleaned successfully

*10x magnification, 15 um features

Obstacle: Mold Degradation

*10x magnification, 15 um features

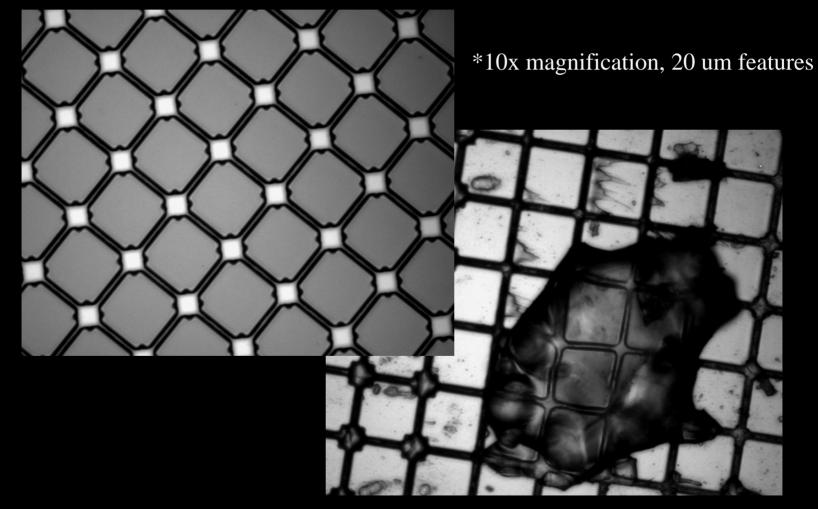
- Features started "breaking"
 - Surface showed cracks, missing pieces

Conclusions: Making Stamps

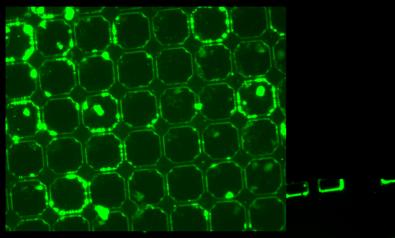
Air Bubbles:

 Re-pressurize vacuum to eliminate surface air bubbles

 Heating stamps reduces curing time


 Must make stamps thinner to prevent trapping bubbles

Conclusions: Making Stamps Con't


Missing Features:

- Best *not* to have other material between mold and PDMS
 - No Detergent: plain stamps have best quality
 - No silanization procedure
- Perfect mold required to make perfect stamps

Differing Stamp Quality

Conclusions: Inking Stamps

Inking time:

- Let protein sit on stamp at least 30 min
 - More time= no difference
 - Less time = less protein

*Note: Storing PDMS in deionized water for 4+ days before inking helped adsorb protein

*10x magnification, 15 um features

Conclusions: Stamping the Substrate

 Cannot produce good substrate printings without thick, even layer protein adsorbed on stamp

 Important to keep time between drying stamp and stamping substrate minimized

Proposed Future Work

Questions still to address:

- Understand why molds degrade
- How to perfect stamp modification
- Determine best stamping method
- Culture cells onto protein-stamped substrates

<u>References</u>

- 1. H Kolb. How the retina works. American Scientist, Jan.-Feb. 2003.
- 2. J. Chang et al. A modified microstamping technique enhances polylysine transfer and neuronal cell patterning. Journal of Biomaterials, 2003.
- 3. D. Branch et al. Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture. Journal of Biomaterials, 2001.
- 4. D. Branch et al. Long-term maintenance of patterns of hippocampal
- pyramidal cells on substrates of polyethylene glycol and microstamped polylysine. IEEE Transactions on Biomedical Engineering, March 2000.
- 5. A. Bernard et al. Microcontact printing of proteins. Journal of Advanced Materials, July 2000.
- 6. B.Wheeler et al. Microcontact printing for precise control of nerve cell growth in culture. Journal of Biomechanical Engineering, February 1999.
- 7. R. Kane et. al. Patterning proteins and cells using soft lithography. Journal of Biomaterials, 1999.
- 8. D. Branch et al. Microstamp patterns of biomolecules for high-resolution neuronal networks. Medical & Biological Engineering & Computing, 1998.
- 9. B. Ujhelyi and K. Garsha, Patterned growth of neurons in vitro. Beckman Institute for Advanced Science and Technology, UIUC, 2003.
- 10. B. Wheeler et al., <u>http://soma.npa.uiuc.edu/labs/wheeler/home.html</u>. UIUC, 2005.

Thank You!

- Dr. David Schneeweis, UIC Neuro-engineering
- Sujata Sundara-Rajan, Graduate Student Mentor
- Dr. Takoudis, Dr. Linninger; REU Program Directors
- All RET/REU Colleagues
- NSF EEC-0453432 Grant, Novel Materials and Processing in Chemical and Biomedical Engineering