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Spreading of a Herschel-Bulkley fluid using lubrication approximation 

 

Abstract: 

 In this work the flow of 1.5% Carbopol-940 solution was studied as it was transported 

through a wedge like system at different angles, entrance heights, exit heights, and velocities. 

The high-speed video of the event was processed by tracking particles entrapped in the solution. 

This data was used to find the velocity field beneath the wedge. Also, the forces of the fluid 

(normal and shear) were measured. The known theory of lubrication approximation for 

Newtonian fluids was used for comparison to the experimental results. It was found that 

Herschel-Bulkley fluids exhibit similar behavior, such as backflow and stress under the angled 

plate, to the Newtonian fluid. Furthermore, empirical results for the viscosity of the fluid show a 

small variance and agree with those found from the viscometer. Overall, this work proves that 

the lubrication approximation can be used with a highly non-Newtonian fluid and at angles at 

least up to 20 degrees.  

 

1. Introduction:  

 The spreading of viscous fluids is something that is encountered in everyday life. From 

creams, lotions, foods, and construction materials, spreading behavior is one of the main things 

considered during the preparation process. The motivation behind this study is to model the 

spreading of soft solid materials, which can be described as Herschel-Bulkley fluid. A Herschel-

Bulkley fluid has a shear rate dependent viscosity and a yield stress, meaning that it can be 

spread onto a surface without running or dripping.  Creating a product that can be applied 



smoothly and quickly is a competitive advantage for a company which can lead to a more 

profitable business for both the supplier and buyer.  

 In order to model such a compound, a well-known transparent Herschel-Bulkley fluid 

was used. Carbopol-940®, a high molecular weight polyacrylic acid (PAA), is a commercially 

available thickener often used as an ideal non-Newtonian fluid.1 According to the manufacturer 

(Lubrizol®), it has high relative viscosity (similar to joint compound), high shear tolerance 

(similar to joint compound), and is a clear gel when neutralized.2 Carbopol’s shear thinning 

behavior can be described by the Herschel-Bulkley model 

  n

c c cτ τ γ 0;   τ τ τ τ Kγ            (1) 

where τ  and γ are the shear stress and shear rate, respectively, 
cτ  is the yield stress of Carbopol 

and K and n are the consistency index and the behavior index, respectively.3 

 

2. Experimental: 

2.1 Fluid preparation 

 A 1.5% Carbopol-940® (Lubrizol) aqueous solution was prepared by following 

Novean’s specifications. First, 30 g of Carbopol powder was dissolved in 1970 mL of water. The 

Carbopol was slowly added to the water, while stirring on a hot plate at 50˚C, with a magnetic 

stirrer set to the highest sustainable setting. The solution was allowed to stir overnight. Next, a 

NaOH solution was prepared by dissolving 2.8 g of NaOH pellets in 70 mL of water.  Finally, 

the acidic Carbopol solution was neutralized by slowly adding 1 M NaOH and checking the pH 

with pH-strips. Tracer particles (washed coffee grinds) were mixed in once the Carbopol-940 

solution was prepared.  

2.2 Rheological measurement 



The flow curve of the Carbopol solution was measured using DHR-2 (TA Instruments) shear 

viscometer. This viscometer measures viscosity using a vane tool. The vane tool had four 

rectangular blades that protrude from a cylinder to create an outer diameter of 2.80 cm. It was 

positioned inside a cup that had an inner diameter of 3.02 cm. Each fin of the vane had a height 

of 4.22 cm, protruded from the inner cylinder by 1.00 cm, and had an outer edge thickness of 

0.12 cm which increased to 0.20 cm where it connects to the inner cylinder. The vane tool was 

calibrated using standard Silicone oil (Brookfield Eng.) with the viscosity of 0.498 Pa s. To 

calibrate the vane tool the fluid was tested at several shear rates, and then a calibration factor in 

the software was adjusted accordingly. The shear strain rate was ramped up from 0.1 s-1 to 1000 

s-1 and held constant at each speed for 20 s in all the experiments. The shear rate for the vane tool 

was calculated as   
1

0 i 0 iγ  = ω R +R R -R / 2



, where ω is the angular velocity, R0 is the outer 

radius, and Ri is the inner radius. 

2.3 Apparatus set up 

 

Figure 1. Sketch of experimental setup. Entrance height, H0, exit height, H1, length, L, angle, α, 

and velocity of moving bottom plate, V0, are labeled.  



 The wedge-flow meter of length L (Fig. 1) consists of a mobile bottom plate with an 

adjustable velocity (V0) and a stationary spreading plate, which can be adjusted to the desired 

angle, α, and an adjustable entrance height, H0. A force gauge (IMADA model DS2-11) is fitted 

normal to the edge of the top plate to measure the force on the fluid as it moves through the 

system. The set-up was powered by a LEESON A.C. motor (Model: CM38P17EZ12C). The exit 

height, H1, was adjusted to a minimum value between 0.6 mm and 0.8 mm and a maximum value 

between 1.3 mm and 1.5 mm and the entrance height was adjusted to create angles of 5°, 10°, 

and 20°. Six experiments were completed combining different H0 and H1 values as well as two 

experiments where the velocity was increased for one angle setting from 0.167 m∙s-1 to 0.24 m∙s-

1. A Phantom Miro eX4 high-speed camera (model: MIROEX4-1024MC) was used to record 

each trial. Then the video data was converted into JPEG images using the Phantom Video Player 

program.  

2.4 Processing techniques 

 The thickness of the Carbopol gel film was measured with a wet-film thickness gauge 

after the Carbopol exited the wedge system in order to confirm the exit height of the wedge. The 

JPEG images were analyzed with the use of a MATLAB R2012a program. The tracer particles 

were tracked manually to allow for higher accuracy than an automatic tracking program would 

provide. Then, their velocities were plotted using OriginPro 8.6. Contour graphs were produced 

for each trial. A dimensionless parameter 0H  was used to scale the y-axis of the graphs 

  0
0

1

H
H  = 

H
           (2) 

where H0 is the entrance height and H1 is the exit height. Similarly the x-axis was scaled to 

become a dimensionless x  scale 



  
x

x = 
L

          (3) 

where x is the distance from the origin and L is the length created by the projection of the wedge 

onto the x-axis. Lastly, the force gauge located at x = 0 and y = H0 collected data and the 

maximum value was recorded.      

 

Theoretical discussion 

 The hydrodynamic theory of lubrication is a well-studied and understood phenomena 

when it comes to Newtonian fluids under limited conditions.  It is applied to journal bearing and 

extruder screws, where the velocities and pressures are high, the angle between the moving and 

stationary parts is small, and the viscous forces predominate over inertia forces. Under these 

conditions the geometry of the system can be reduced to a wedge shape with a moving bottom 

plate of length, L, and an entrance and exit height, H0 and H1, respectively. Since the velocity in 

the y-direction, v, is much smaller than the velocity in the x-direction, u, the vertical motion 

under the wedge is ignored. Using Schlichting’s approximations from Boundary Layer Theory 4 

 



Figure 2. Coordinate axis of the experimental setup with velocity field shown.  
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where 
dp

dx
is the pressure gradient, μ is the viscosity, and 

2

2

u

x




 is the second derivative of 

velocity in the x direction.  

 Then, applying boundary conditions of the system 

  
0y = 0:  u = V

y = H:  u = 0
         (5) 

where V0 is the moving plate velocity and H is the equation of the wedge. The equation for 

velocity becomes 

  
2

0

y H dp y y
u = V 1 -  - 1 - 

H 2μ dx H H

   
   
   

      (6) 

Due to conservation, the volume flow in every part of the system must be constant  

  

H(x)

0

Q = u dy = const.          (7) 

Evaluating Eq. (7) and solving for the pressure gradient  

  0

2 3

Vdp Q
 = 12μ  - 

dx 2H H

 
 
 

       (8) 

Using the boundary conditions of 

  
0

0

x = 0:  p = p

x = L:  p = p
         (9) 

gives  

  

x x

0 0 2 3

0 0

dx dx
p(x) = p  + 6μV  - 12μQ

H H        (10)  



where L is the length of the wedge in the x direction, p0 is the pressure outside the wedge, and  

  

L L

0 2 3

0 0

1 dx dx
Q = V

H H2          (11)  

The wedge is flat in this case, therefore, the equation of the wedge can be described as  

  1 0
0

H  - H
H = x + H

L
        (12)  

Inserting Eq. (12) into Eq. (10), then solving for the pressure distribution     

  
 

0 1 2
0 22 2

0 1

6μV L (H  - H)(H - H )
p(x) = p  + 

HH  - H
      (13)  

The force due to the normal stresses can be found as 
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The force due to the shear stress can be found as       

  
 
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  
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    (15)  

The width, W, was multiplied to Eqs. (14) and (15) because the force is accumulated across the 

plate in the z direction. It is approximated that the flow is the same at all z coordinates.  

The plate is at an angle with respect to the x axis; therefore, in order to find the normal force on 

the plate the coordinates have to be resolved.  



 

Figure 3. Coordinate sketch showing vector n  is normal to the top plate. 

  n = -i sin(α) -  j cos(α)        (16) 

  nσ  = n σ          (17)  

  2 2

nn n xx xy yyσ  = n σ  = sin (α) σ  + 2sin(α)cos(α)σ  + cos (α)σ    (18)   

  

1

n nn

0

dx
F  = σ

cos(α)         (19)  

Where n is the normal vector to the plate, nσ   is the stress vector normal to the plate, σ  is the 

stress tensor, and 
nF  is the force normal to the plate. The moment of force balance equation 

relates the center of pressure, xc, and the normal force to the position of the force gauge, x0, and 

the experimentally measured force, Fexp. 

  exp 0 n cF (1 - x ) = F (1 - x )        (20)  

Where the center of pressure is given by  
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    (21)   

This paper presents data that was collected using a non-Newtonian fluid (Carbopol-940®) 

flowing through a system with larger angles than those recommended by the current model; 

however, the theoretical models for force (F) and velocity  are still of merit, and are used as 

the control to the experimental results that were collected.  

 Carbopol-940® is a Herschel-Bulkley fluid, however; after the yield stress, τc, is reached 

it can be modeled by the power-law model  

  nτ = Kγ          (22)  

where τ and γ  are the shear stress and shear rate, n is the behavior index, and K is the 

consistency index. The viscosity can then be expressed as 

  n-1μ = Kγ          (23) 

The shearing behavior of a power law fluid is represented by a line on a log-log scale. For shear 

thinning fluids the behavior index, n, is less than one, which correlates to a negative slope on a 

log-log graph. 5 
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Figure  4. Shows the decrease in the viscosity of the Carbopol from almost 1000 Pa∙s at a shear 

rate of 0.1 s-1to less than 1.5 Pa∙s at a shear rate of 90 s-1. The negative slope confirms the shear 

thinning behavior of Carbopol-940. The fitting line gives values of n = 0.1 and K = 105 Pa∙sn.  

 

Results and Discussion: 

Trial   

(Fig. 5) 

Angle 

(deg) 

H1  

(mm) 
0H  Velocity 

(m∙s-1) 

Force  

(N) 

Viscosity 

(Pa∙s) 

a 5 0.60 23 0.167 19.1 4.7 

b 5 1.50 10 0.167 15.0 5.9 

c 10 0.80 34 0.167 13.5 11.4 

d 10 1.50 18 0.167 7.9 8.3 

e 20 0.60 87 0.167 8.1 20.2 

f 20 1.30 40 0.167 6.8 19.5 

g 20 0.65 80 0.240 9.8 17.2 

h 20 1.50 35 0.240 9.7 20.0 

Table 1: Summary of result indicating the name of the trial (a-h) the angle of the wedge, α, the 

exit height (H1), the dimensionless scaled entrance height, 0H , velocity of the bottom plate, V0, 

the maximum force measured (F) and the empirically found viscosity, μ. 

 



 



 

Figure 5. Contour plots showing velocity field for each experiment in Table 1. The legend 

shows the ratio of velocity to maximum velocity. 

 

 As expected from the velocity profile in Eq. 6 (and maybe shown in FIG 2 in beginning 

of theory), the fluid near the moving plate up to the height of the exit moves at speeds near the 

maximum velocity, this is shown by colors yellow, orange, and red in Fig.5 When the fluid nears 

the wedge the movement of the bottom plate is not felt as strongly as the pressure gradient 

pushing the fluid backwards causing a negative velocity, shown by different shades of blue. In 

Figure 5, the trend of increased and faster backflow can be seen as  get larger. From graphs d:  

=18, c: =34, f:  =40, to e:  =87 the concentration and the intensity (shade) of blue gets 



larger indicating a larger amount and faster reverse flow. The graphs are all scaled from -0.2 

(dark blue) where the negative indicates reverse flow at 20% of V0 to 1(red) which correlates to 

100% or V0 in the forward direction.  

 The force gauge data in Table 1 reveals three trends of the fluid that agree with the 

theory. Keeping the exit height ( ) constant, the force decreases as  increases. Figure5 a,c,e  

  =34,  =87, respectively all have  equal to 0.6 mm to 0.8 mm (the low value) 

and the forces respectively decrease from 19.1 N, 13.5 N, to 8.05 N.  Similarly in the case of 

equal to 1.3 mm to 1.5 mm (the high value), Fig. 5 b,d,f   =10,  =18,   =40, 

respectively decrease in force from 15.0 N to 7.9 N to 6.8 N.  The trend for keeping, constant 

but increasing H1, as in trials a and d, which had   set at 23 and 15, two relatively close values, 

the force decreases from 19.1 N to 7.9 N. The same trend was present in trials c and f, where  

was set to 34 and 40. The force decreased from 13.5 N to 6.8 N as increased from 0.8 mm to 

1.3 mm. The third trend observed was the increase in velocity while keeping both and  

constant causing the force to increase. From trials e and g, where was set between 0.6 mm to 

0.65 mm and  was between 80-87, when the velocity was increased from 0.167 m∙s-1 (e)  to 

0.24 m∙s-1 (g) the force increased from 8.05 N to 9.77 N. Also from the contour g and e (Fig. 5) it 

can be seen that the reverse flow velocity also increases as V0 increases due to the increase in the 

intensity of the blue shade from e and g.  The same trend for both reverse flow and increased 

force were seen in trials f and h where was set between 1.3 mm to 1.5 mm and was 

between 35 and 40, when the velocity was increased from 0.167 m∙s-1 (f) to 0.24 m∙s-1 (h) the 

force increased from 6.8 N to 9.73 N, and the contour map (Fig. 5) from f to h show increased 

intensity of blue. The forces due to the normal and shear stress are both proportional to velocity 



as in Eqs. (14) and (15); therefore, any increase in velocity should be reflected in a directly 

proportional increase in force measured. Indeed, the velocity ratio is equal to the force ratio 

between (f) and (h) and is approximately equal to the force ratio (e) and (g). 

 The viscosity values shown in Table 1 were found empirically by equating the theoretical 

force to the experimental force. Since Carbopol is a shear thinning fluid the viscosity is 

dependent on shear rate.  The maximum shear rate occurs at the exit of the wedge and was found 

to be approximately 300 s-1 and the minimum shear rate occurs at the entrance of the wedge and 

was found to be approximately 3s-1. According to Fig 4 these shear rates correspond to a 

viscosity of 0.6 Pa and 39 Pa , respectively. The viscosity values found empirically in Table 

1 are within this viscosity range. Therefore, using a Herschel-Bulkley fluid to model a 

Newtonian based fluid theory was found to be successful.   
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