

"Plasma Assisted Synthesis of Molybdenum Carbide Catalyst"

Llarimar Maldonado-Rodriguez and Pamela Buzzetta

"Novel Materials and Processing in Chemical and Biomedical Engineering" University of Illinois at Chicago – Summer 2005

Directors: Dr. Christos Takoudis and Dr. Andreas Linninger Faculty Advisor: Dr. Kenneth Brezinsky

Outline

Introduction to Carbide and Nitride Catalysts

- Motivation to Produce the Catalysts
- Previous and Current Experimentation
- Apparatus and Procedures for Experimentation
- Results of Experiments
 - Tools for Analysis
 - Raman, XPS, and SEM Results
- Conclusions of Results
- Future Work for Research

Introduction to Carbide and Nitride Catalysts

Motivation to Produce the Catalysts

Replace noble metal catalysts (Pt, Pd, Ru, Rh)

• Water-Gas Shift Reaction for fuel cells: $CO + H_2O \leftrightarrow CO_2 + H_2$

 Hydroprocessing, hydrogenation, hydrogenolysis, methane activation, amination, acetone condensation, and isomerization

Introduction to Carbide and Nitride Catalysts

Previous Experimentation

- Industry: thermal processing
- Our lab: Microwave Assisted Fluidized Bed Synthesis

Advantages: less time, lower temperatures, lower cost

Introduction to Carbide and Nitride Catalysts

Current Experimentation

- Plasma Assisted Process Theory
 - Plasma-Enhanced Chemical Vapor Deposition
 - Surface Modification \rightarrow Our goal

Advantages

- Influence surface properties of metal
- Lower temperatures and less processing time and energy than thermal chemical vapor deposition (CVD)

Plasma Discharge Reactor

Reactor Schematic

Stretch 0.25mm diameter Mo wire or 0.025mm thick Mo foil between anode and cathode

Experimental set-up prior to plasma discharge ignition

- Turn on vacuum, resistor, and high voltage source
- Set reaction chamber pressure
- Apply 8.75kV across electrode and open gas source (H_2 in Ar or C_2H_4 in Ar)
- Begin timing of reaction at introduction of gases

Discharge in Ar

Discharge in Ar + C_2H_4

Discharge in Ar + H_2

Plasma discharges in gas

Results of Experiments

Tools for Analysis:

 Raman Spectroscopy - measures monochromatic light source shift

 X-ray Photoelectron Spectroscopy – measures bond energies

 Scanning Electron Microscopy – surface imaging

Raman Results

Raman spectra for samples 3 and 4

XPS Results

XPS for Sample 3

XPS Results

Orbital	Sample 3	Assignment	Sample 4	Assignment
Mo 3d	228	Mo	227.8	Mo/ Mo ₂ C
	231.3	MoO_xC_y	232.1	MoO_3
			235.5	MoO _x
C 1s	283	Mo ₂ C	284.3	С
	283.9	С	288.5	C-O/C=O
O 1s	530.2	MoO _x	532.1	MoO _x
	531.3	MoO ₃		

SEM Results

SEM of Mo Wire Reference at 2000x and 5.00 kV

SEM of 30 second sample at 2000x and 5.00 kV

SEM Results

SEM of 30 second sample at 2000x and 5.00 kV

Conclusions of Results

- Raman shows carbon deposits and oxides at nonuniform compositions across samples
- XPS suggests we could have carbide, oxycarbide, and oxides
- SEM shows uniform film formation
- Mo₂C confirmation requires further tools of analysis; Transmission Electron Microscopy (TEM)
- Molybdenum oxides suggest surface reaction with oxygen

Future Work for Research

- Use TEM to confirm film identity as carbide or otherwise
- Synthesize catalysts in powder form
- Test for catalytic activity in Water-Gas Shift Reaction

 Develop control process for reactor in forming carbide and nitride films (pressure, time, voltage, temperature, metal base identity, gas composition, etc.)

Acknowledgments

- National Science Foundation for EEC-0453432 Grant that funded the "Novel Materials in Processing in Chemical and Biomedical Engineering" for Summer 2005 at UIC
- Directors: Dr. Christos Takoudis (REU) and Dr. Andreas Linninger (RET)
- Faculty Advisor: Dr. Kenneth Brezinsky
- Graduate Student Advisor: Gabriel Duran
- Co-workers: Timothy Walsh (RET) and Charlie Robinson (Upward Bound)
- Plasma Expert: Dr. Alexei Saveliev
- Laboratory: Dr. Lawrence Kennedy
- Microscopy Expert at RRC: Dr. John Roth
- Glassblower: Brian Schwandt
- Post-Doctorate Advisor: Dr. Jennifer Dunn
- Dr. Lawrence Kennedy students
- MARC U*STAR PUCPR Honor Program

Questions?