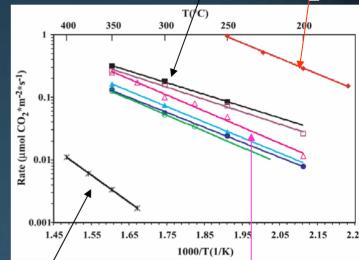


Analysis of Au-CeO₂ Nano-particles using TEM


By: Peter Gu

Professor: Robert F. Klie, PhD

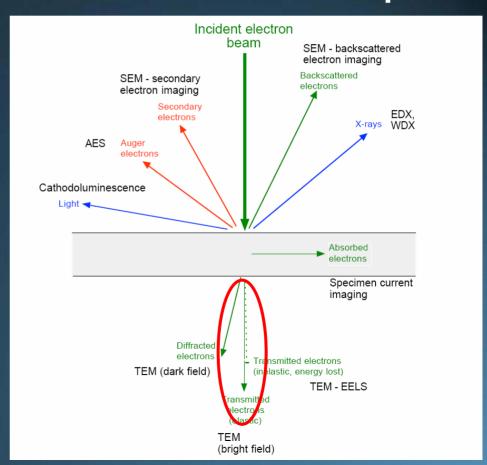
Background CuO/ZnO/Al₂O₃

- Water Gas Shift Application
 - $CO + H_2O \rightarrow CO_2 + H_2$
 - Hydrogen production
 - Fuel cell power generation
- Drawback
 - Only occurs at high temperatures
 - Catalyst to lower activation energy
 - Previous studies
 - Pt and Cu-ZnO (costly / pyrophoric / instability)
 - CeO₂ (easily reduced and oxidized / stable / wide temperature range)
 - Addition of noble metals increase its ability to undergo reduction (Au)
 - Doping with rare earth metals (La / Gd) increases oxygen vacancies.

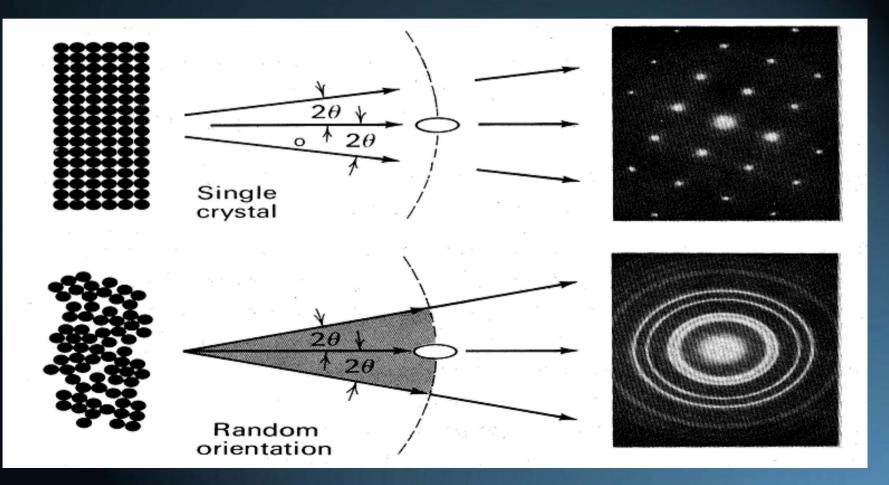
Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science 301 (2003) 935, published colline 3 July (10.1126/science.1085721).

Ce La O₂

0.7% AuCe(La)O₂ leached

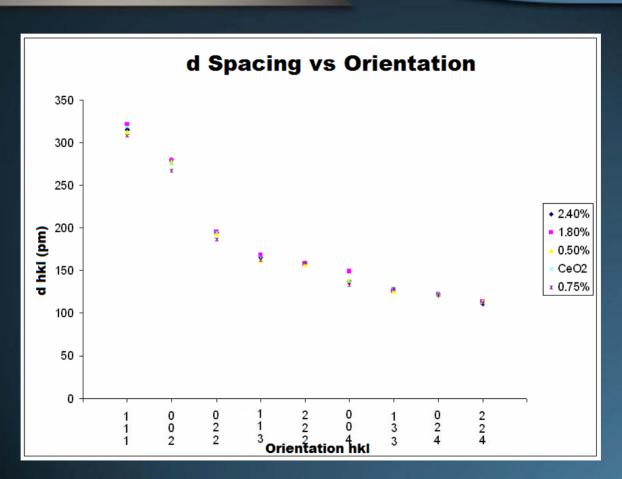

My Project Goals:

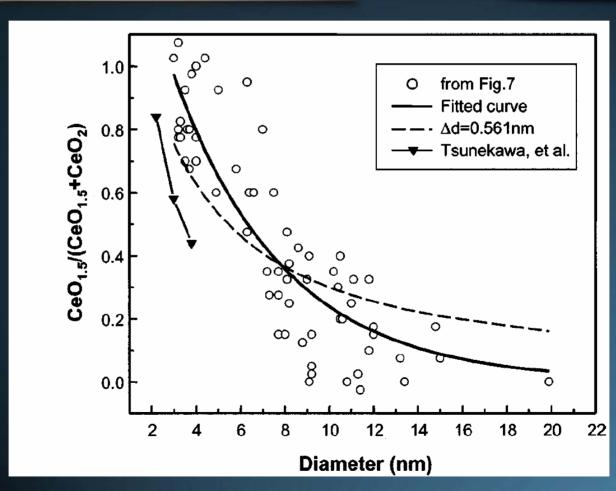
- Explain variations in catalytic activity
 - Size of Ceria Particles
 - Lattice Parameter
 - Structure of particle
 - Leaching
- Samples to be analyzed
 - 2.4% Au (CeGd)O₂
 - 1.8% Au (CeLa)O₂ Leached
 - 0.5% Au (CeGd)O₂ Leached
 - 0.75% Au CeO₂



Transmission Electron Microscope

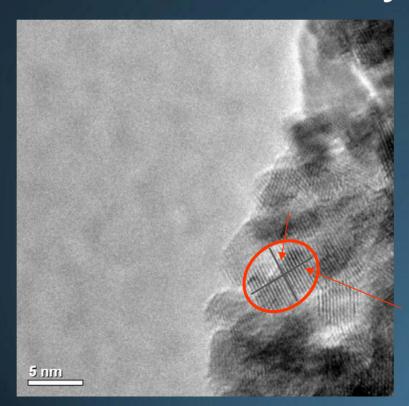
- Beams of electrons transmitted
- Wavelength of electrons are smaller than atoms
- Electron transparent specimen




*J.M. Zuo and J.C. Mabon, Web-based Electron Microscopy Application Software: Web-EMAPS, Microsc Microanal 10(Suppl 2), 2004; URL: http://emaps.mrl.uiuc.edu/

Lattice Parameter Comparison				
Particle	Leached	Lattice (pm) ± 10		
CeO ₂ *	N/A	551.3		
0.75% Au CeO ₂	No	548.0		
1.8% Au (CeLa) O ₂	Yes	557.5		
2.4% Au (CeGd)O ₂	No	550.9		
0.5% Au (CeGd)O ₂	Yes	540.9		

*J.M. Zuo and J.C. Mabon, Web-based Electron Microscopy Application Software: Web-EMAPS, Microsc Microanal 10(Suppl 2), 2004; URL: http://emaps.mrl.uiuc.edu/



L. Wu, H. Wiesmann, A. Moodenbaugh, R. Klie, Y Zhu, D. Welch, M. Suenaga, Physical Review B 69 (2004)

Particle Size Analysis

Summary

Sample	d spacing (pm)	Perpendicular to Atomic Fringe (nm)	Along Atomic Fringe (nm)
2.4% Au CeGd O ₂	550.9	3.7	3.6
1.8% Au CeLa O ₂ Leached	557.5	5.3	5.3
0.75% Au CeO ₂	548	4.4	4.6
0.5% Au CeGd O ₂ Leached	540.9	4.1	3.7

Conclusion

- There were no significant deviations in lattice parameter; however there are some trend speculations
- Particle size analysis indicates the 1.8% is somewhat larger and the 2.4% is slightly smaller compared with the remainder of the samples.
 - Could be due to the Leaching process
 - Not enough difference to be attributed to catalytic activity variations

Future Work

- Collect more particle size and diffraction pattern data
- Measure gold particle size
- EDS mapping on each sample
- TEM in situ at high temperatures

Acknowledgements

- The financial support of the Department of Defense and the National Science Foundation under:
 - Grant NSF EEC 0453432.
 - Grant NSF CTS 0706699
- PhD Takoudis and Prodyut for organizing the program
- PhD Klie for allowing me to conduct research under his guidance.
- PhD Guang Yang for volunteering many of his hours helping me with the project
- PhD Roth for teaching me how to obtain remarkable images using the TEM

Thank you for listening! Any questions?