Electrophysiology & Neurochemistry Sensor for Stroke Studies

Victor Nekrasov P.I. Professor Patrick J. Rousche Masters Student Peter Tek

Neural Engineering Applications Lab UIC Bioengineering

Purpose of Study

- To better understand the complex electrophysiological and neurochemical changes during stroke
- Developing a sensor that detects the various spatiotemporal changes that occur in neural tissue during and after stroke
- In the future the research will help with rehabilitation after stroke by possible electrical and chemical stimulation of neural tissue surrounding the stroke

mpact of Stroke in the U.S. American Stroke Victims

- 700,000 people suffer annually
- 150,000 people killed each year
- 3rd leading cause of death behind heart disease and cancer
- Annual economic burden of \$62.7 billion

American Heart Association: Heart Disease and Stroke Statistics – 2007 Update; Rosamond, W. et al. Circulation 2007;115:e69-e171

What is a Stroke

Damage to the brain

- Ischemic Stroke
- Hemorrhagic Stroke
- Outcomes of Stroke
 - Death 24%
 - Loss of one or more normal functions
 - Permanent 15-30%
 - Temporary 50-70%
- Focus on Ischemic Stroke

American Stroke Association, Stroke Treatment; http://www.massgeneral.org/vascularcenter/page.asp?id=stroke

http://www.hmc.psu.edu/neurosurgery/services/diseases/Stroke.htm

Stroke Treatment

Ischemic Stroke

- Tissue Plasminogen Activator (tPA)
- Thrombolytic drug: Dissolves clot & restores blood flow
- 1-3% of stroke victims are eligible
 - Therapy started within 3 hours of stoke onset
 - Increased risk of bleeding into the brain

Proposed Device

Fiber Optic Probe to Induce Stroke

- Use micromanipulator to position fiber optic light probe
 - Precise target location
 - Ischemia size control
- Illumination for 20 min following dye injection

Comparative Electrophysiological Response Dynamics During Stroke, Terry C. Chiganos, PhD Thesis (2006)

Neurotransmitter

- Microdialysis technique to collect samples
- HPLC technology to identify and quantify specific neurotransmitters
- Create a spatial and temporal "roadmap" of neurochemical changes

Electrophysiologic

- Microwire electrodes
 - Multiple lengths
 - Different Brain Layers
 - II/II "integrating" and "output"
- Brain Signals
 - Amplified
 - Analyzed using TDT
 - Before, During, and Af Stroke

Cranial Window Prototype

- Attached to the skull of the rat
- Incorporates
 - Microdialysis
 - Multi-depth microwire electrode array
 - Cannula for photo-thrombosis fiber optic
- Made using 3D printer
 - Dimension Elite

Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS)

- powerful technique for the characterization of electrochemical systems
 - Applications in the field of materials characterization
 - Tool for investigation of mechanisms involving passivity and localized corrosion studies
 - Evaluating properties of surface modified and coated materials
- Like Resistance, Impedance is a measure of the ability of a circuit to resist the flow of electrical current

Ohms Law: V = IZ where V is Voltage, I is Current, and Z is Impedance

How EIS Works

- Potentiostat or Galvanostat
- Potentiostat: Sets up a voltage between working and reference electrode, measures current in the cell
- Galvanostat: Sets up a current between the two electrodes, measures potential of the cell
- Impedance is then calculated Z = V/I

Electrochemical Cell

- 3 electrodes in electrolyte liquid
- Working Electrode
 - Electrode under study
 - Point at which the voltage is controlled and current is measured, or visa versa.
- Reference Electrode
 - Constant electrochemical potential when no current flows through it
 - Used in measuring working electrode potential
 - Typically Ag/AgCl or Saturated Calomel Electrode (SCE)
- Counter (Auxiliary) Electrode
 - Conductor that completes the electrical circuit of the cell
 - Inert conductor like platinum or graphite
- Electrodes emmersed in electrolyte solution
 - PBS Phosphate Buffer Saline

EIS Data for First Electrodes

Recording electrodes: Low impedance necessary Stimulating electrodes: High impedance is preferred

EIS Data for Redesigned Electrode

TDT Data from Electrode Array

Conclusion

- Purpose of study is to better understand the complex spatiotemporal events that occur during a stroke and during the recovery process
- Sensor will give us a tool to quantitatively look at what happens to neural tissue
- Allow for more affective treatment of stroke in the future
 - Aide in rehabilitation
 - Prevention of the devastating damage during stroke

Acknowledgements

- DoD-ASSURE and NSF-REU Programs
 - For financial support Grant NSF EEC 0453432
- Dr. Patrick J. Rousche
 - P.I. of Neural Engineering Applications Lab
- Peter Tek
 - Masters Student N.E.A.L.
- Dr. Christos G. Takoudis
 - Summer 2007 REU Program