Chondrogenic Differentiation of hMSCs on PCL Nanofibers

Winnie Kuo

University of California, Berkeley

Final Presentation for NSF-REU at UIC August 3, 2006

Advisors: Prof. Cho, Prof. Megaridis, Joel Wise

Background Human Mesenchymal Stem cells (hMSCs) can differentiate into many cell lineages Chondrogenesis -- cartilage repair therapy Electrospun PCL nanofibrous scaffolds are biodegradable & mimic extracellular matrix

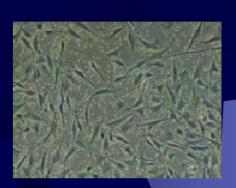


Figure 1. hMSCs in culture

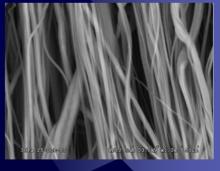
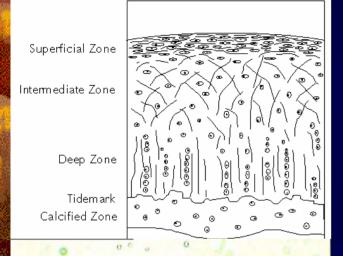
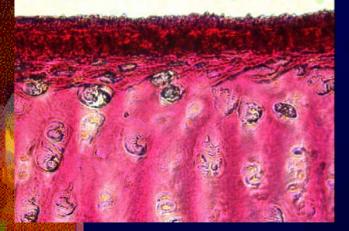
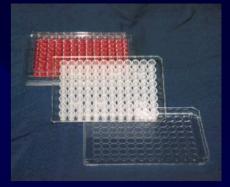




Figure 2. Oriented nanofibers

Goals

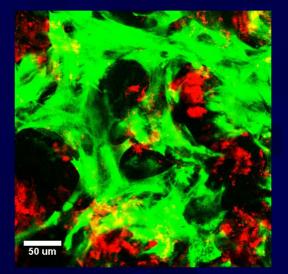


Mimic thin superficial layer of articular (joint cartilage)
Attach & Differentiate hMSCs into cartilage cells on polymer nanofiber scaffolds
Observe cell morphology &

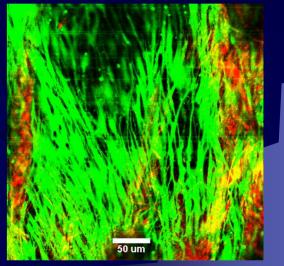
 Observe cell morphology & differentiation based on physical cues

Figure 3. Articular cartilage 8/3/2006

Project Design

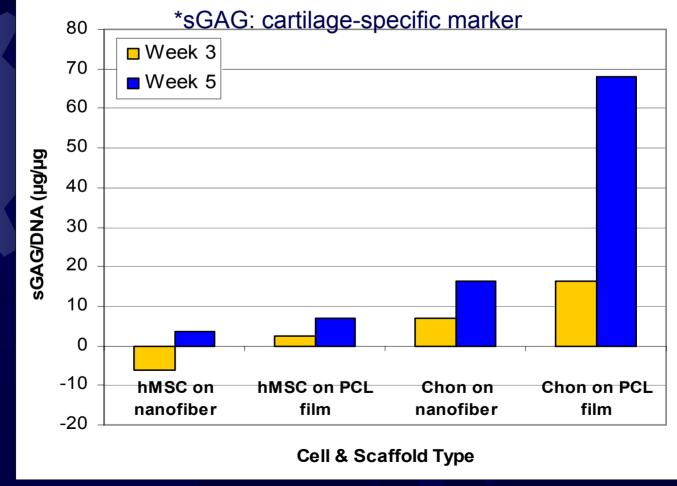


Seed hMSCs on nanofibrous scaffolds Cultured with chondrogenic media in 96-well plates (control with growth media) Monitor cell proliferation & differentiation: Fluorescence imaging Total DNA count Sulfated Glycosaminoglycan (sGAG)


Cell Morphology

50 um

Chondrogenic cells on nanofiber scaffold


Chondrogenic cells on PCL film scaffold

Mes. stem cells on nanofiber scaffold

Tracking Differentiation

Amount of sGAG* detected per µg of DNA

8/3/2006

Conclusions

- Cells on nanofibers proliferate in an oriented manner
- Chondrogenic media and fiber alignment induce chondrogenesis
 - By 5th week, chondrogenic cells produced high amounts of sGAG

 Oblong chondrogenic cell shape resembles superficial layer of articular cartilage

Future Directions

hMSCs cultured on nanofibers as an alternative source of cartilage cells Advantage: "renewable" Incorporate cartilage-inducing factors within nanofibers Chemicals & proteins contained within fibers may mimic ECM better than mere suspension

Acknowledgements

- NSF EEC-0453432 Grant
- Novel Materials and Processing in Chemical and Biomedical Engineering (Director C.G. Takoudis)
- Funded by the DoD-ASSURE and NSF-REU Programs
- Professor M. Cho
- Professor C. Megaridis
- Professor A. Yarin
- Joel Wise

References

- 1. Reneker, D.H. et al, *Electrospinning of Nanofibers from Polymer Solutions and Melts*, Advances in Applied Mechanics, Vol. 41, Elsevier Inc. 2006.
- 2. Tuan, R.S., Song, L., Baksh, D., Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J. Cell. Mol. Med. Vol 8, No 3: 301-316 2004.
- 3. Tuan, Boland, Tuli, Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Research & Therapy 2003, Vol 5: 32-45.
- 4. Calendar, R., *The Three-Dimensional Structure of Proteins*, Molecular & Cell Biology 102 Lecture Notes, Berkeley, CA, 2006.
- 5. Green, N., Wise, J., Cho, M., Megaridis, C., *Quantitative analysis of human mesenchymal stem cell alignment by electrospun polymer nanofibrous scaffolds*, University of Illinois, Chicago, 2005.
- 6. Li, W. et al, A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells, Biomaterials, Vol. 26, Issue 6: 599-609, 2005.
- 7. http://en.wikipedia.org/wiki/Polycaprolactone, "Polycaprolactone" Wikipedia, the free encyclopedia.
- 8. http://ucalgary.ca/~kmuldrew/cryo_course/cryo_chap9_1.html, "Cryopreservation and Banking of Tissues" Ken Muldrew, 1999.
- 9. http://www.ukcte.org/gci.htm, "Cell Phenotype & Function" UK Centre for Tissue Engineering
- 10.http://www3.imperial.ac.uk/bioengineering/research/physiologicalfluidmechanics/t
ransportintissue, "Transport in Tissue" Imperial College London, Dept. of
8/3/200 Bioengineering10NSF REU at UIC Site10

Thank You!