Cerebrospinal Fluid-Tissue Interactions in the Human Brain

REU Summer Program, Thursday, June 5, 2006 LPPD, UIC, Chicago, IL 60607

1

Kirstin Tawse

Advisors:

Professor Andreas Linninger Michalis Xenos, PhD Brian Sweetman

Laboratory for Product and Process Design,

Departments of Chemical and Bio-Engineering, University of Illinois, Chicago, IL, 60607, U.S.A.

What is Intracranial Dynamics?

Intracranial dynamics (ICD) is defined as the interaction between the solid brain, cerebral spinal fluid (CSF), and blood flow

- CSF flows through ventricles and cerebral, spinal SAS, and the porous parenchyma in a pulsatile manner
- Dynamics of blood and CSF flow result in deformation of brain tissue

Goal: use physics and math to quantify what was previously only understood qualitatively

Motivation for Brain Deformation Studies

- Analysis quantifies clinical observations

- Quantification can lead to prediction

- Prediction allows more effective treatments or prevention

Hydrocephalus

By accurately predicting fluid tissue interactions, resulting deformations lend insight into pathological conditions, in particular, hydrocephalus

Current treatment methods very costly and dangerous - \$1 billion annually,

3% mortality rate for hydrocephalus related hospital admissions

high failure rate – replacement surgeries as prevalent as primary surgeries

Computer-assisted analysis approach

Fluid Structure Interactions (FSI) in Biological

- Elements described by assigned empirical parameters:
 - Material properties (solids)
 - » Young's Modulus
 - » Poisson's Ratio
 - » Density
 - » In some cases; Porosity, Permeability
 - Flow properties (fluids)
 - » Viscosity
 - » Density
- Solve differential equations over these elements

Using only Newton's Laws and material properties, physiological phenomena are effectively described

I Poroelasticity of the Brain

- Parenchyma is neither solid nor fluid
 - Solid brain matter
 - CSF filled pores
- Brain is a porous, elastic, deformable medium through which fluid flow is permissable
 - Deformation is a function of flow and pore pressure
- Neither solid nor fluid description appropriate so consolidation theory is used to unite the different descriptions of motion

Simulated Hydrocephalus

- Pressure applied to SAS and ventricles (slightly higher ~ 100Pa) – observed distension validated previous results
- Explicitly applied pressure implicitly defines velocitly in CSF and deformation of the solid – demonstrates effective coupling of porous solid and fluid models

<u>CSF Dynamics</u>

- CSF flow patterns determined not only by brain geometry and CSF production/reabsorption rates, but also by the dynamic interaction of intracranial fluids and tissues
- Brain motion hypothesis –cerebral blood flow causes motion of the solid brain which in turn drives CSF flow
- Expansion of the vascular bed causes subsequent changes in the volume of CSF pathways
 - Transient pressure gradients
 - Pulsatile pressure-driven reversals of flow

Simulation Parameters

<u>Dynamics of CSF Flow Throughout the Cardiac</u> <u>Cycle</u>

Simulate Flow Field (m/s)

Live Patient CINE MRI

<u>Conclusions</u>

- Using simulations based on first principles and physiologically consistent properties we were able to extract conclusions about the dynamics of the human brain
- Validation of previous studies indicating that no large transparenchymal pressure gradient exists during hydrocephalus
- Validation of brain motion hypothesis effectively simulated pulsatile CSF flow driven by expansion of the vasculature system alone

<u>References</u>

- Bering, Edgar A. "Circulation of the Cerebrospinal Fluid." (1961).
- Du Boulay, G. H. "Pulsatile Movements in the CSF Pathways." <u>British Journal of Radiology</u> 39 (1966): 255-262.
- Du Boulay, G, J O'connell, J Currie, Thea Bostick, and Pamela Verity. "Further Investigations on Pulsatile Movements in the Cerebrospinal Fluid Pathways." <u>Acta Radiologica Diagnosis</u> 13 (1972): 496-521.
- Hakim, Salomon, Jose G. Venegas, and John D. Burton. "The Physics of the Cranial Cavity, Hydrocephalus and Normal Pressure Hydrocephalus: Mechanical Interpretation and Mathematical Model." <u>Surgical Neurology</u> 5 (1976): 187-210.
- Linninger, Andreas A., Cristian Tsakiris, David C. Zhu, Michalis Xenos, Peter Roycewicz, Zachary Danziger, and Richard Penn. "Pulsatile Cerbrospinal Fluid Dynamics in the Human Brain." <u>IEEE Transactions on Biomedical Engineering</u> 52 (2005): 557-565.
- Linninger, Andreas A., Michalis Xenos, David C. Zhu, Mahadevabharath R. Somayaji, Srinivasa Kondapelli, and Richard Penn. "Cerebrospinal Fluid Flow in the Normal and Hydrocephalic Human Brain." <u>IEEE Transaction on Biomedical Engineering</u> (2006).
- Linninger, Andreas A., Michalis Xenos, Srinivasa Kondapalli, and Mahadevabharath R. Somayaji. "Mimics Image Reconstruction for Computer-Assisted Brain Analysis." <u>Mimics</u> (2005). http://www.materialise.com/mimics/Awards2005_ENG.html.
- Naidich, Thomas P., Nolan R. Altman, and Sergio M. Gonzalez-Arias. "Phase Contrast Cine Magnetic Resonance Imaging: Normal Cerebrospinal Fluid Oscillation and Applications to Hydrocephalus." <u>Neurosurgery Clinics of North America</u> 4 (1993): 677-705.
- Patwardhan, Ravish V., and Anil Nanda. "Implanted Ventricular Shunts in the United States: the Billion-Dollar-a-Year Cost of Hydrocephalus Treatment." <u>Neurosurgery</u> 56 (2005): 139-145.
- Pena, Alonso, Neil G. Harris, Malcolm D. Bolton, Marek Czosnyka, and John D. Pickard. "Finite Element Modeling of Progressive Ventricular Enlargement in Communicating Hydrocephalus." (2002).
- Rekate, H L., S Erwood, J A. Brodkey, and Et Al. . "Etiology of Ventriculomegaly in Choroids Plexus Papiloma." <u>Pediat. Neuroscience</u> 12 (1985): 196-201.
- Zhu, D C., A A. Linninger, and R D. Penn. "Dynamics of Lateral Ventricle and Cerebrospinal Fluid in Normal and Hydrocephalic Brains." <u>Journal of Magnetic Resonance Imaging</u> (2006).

<u>Acknowledgements</u>

- Novel Materials and Processing in Chemical and Biomedical Engineering (Director C.G. Takoudis), funded by the DoD-ASSURE and NSF-REU Programs
- NSF EEC-0453432 Grant
- Laboratory for Product and Process Design, UIC
- Professor Andreas Linninger, Dr. Michalis Xenos, Brian Sweetman