Understanding L-dopa Transport Understanding L Understanding L-dopa Transport dopa Transport and Metabolism in the Human and Metabolism in the Human and Metabolism in the Human Brain

Final Presentation for REU program August 3, 2006

Megan Mary Mekarski Advisor: Professor Linninger Dr. Libin Zhang

Laboratory for Product and Process Design Laboratory for Product and Process Design

University of Illinois- Chicago Department of Chemical Engineering

Motivation: Dopamine Metabolic in Human Brain

- •**Neurotransmitter and hormone**
- • **Insufficient supply of dopamine causes Parkinson's disease**
	- Approximately 1 out of every 100 adults over the age of 55 suffers from Parkinsonism
	- Dopamine is involved in muscle inhibition and without it patients lose muscle control
- • **Dopamine cannot pass the blood brain barrier so it cannot be administered as a drug**
	- Only small, non polar, lipid soluble molecules can pass the tight junctions of endothelial cells
	- L-dopa can pass and is used instead of dopamine

Metabolic Mechanism for L Metabolic Mechanism for L-DOPA

All L-dopa reactions be included in the mathematical model

PET Scanning and F PET Scanning and F-dopa

- •**Positron Emission Tomography**
- • **F-dopa (6-[18F]fluoro-L-DOPA)**
	- radiopharmaceutical 18F will emit gamma rays when struck by a positron and thus is visible to the scanner.
	- produces methyl-F-Dopa or fluorodopamine just as L-dopa becomes methyldopa or dopamine.

- \bullet **PET scanner measures total radioactivity, so it measures F-dopa, methyl-F-dopa, and fluorodopamine combined**
	- Several techniques have been developed to account for dopamine production only
		- » Using the ratio of radioactivity between the striatum and the cerebellum
		- »Subtracting out the total radioactivity of the cerebellum from the striatum

$$
^{18}F = K_1^{D} * e^{-[K_1^D/V_e]t} * \int_0^T C_1(t) * e^{[K_1^D/V_e]t} dt + qK_1^{D} * e^{-q[K_1^D/V_e]t} * \int_0^T C_2(t) * e^{q[K_1^D/V_e]t} dt + V_0 * C^*(t)
$$

Grid Model of Brain Compartments Grid Model of Brain Compartments

Caudate Nucleus Caudate NucleusPutamen PutamenThalamus ThalamusHippocampus Hippocampus Midbrain MidbrainSuperior Frontal Superior Frontal Gyrus Inferior Temporal Gyrus Middle Occipital Lobe Middle Occipital Lobe Posterior Occipital Lobe Posterior Occipital Lobe

Developing 2 Developing 2-D Model D Model

- \bullet **Three equations for every compartment in the unstructured grid**
	- Diffusion and loss of L-dopa to methyldopa or dopamine
	- Diffusion and production of methyldopa
	- Diffusion and production of dopamine
- **Example: Compartment 131, Caudate Nucleus**
- • **Can diffuse to any compartment sharing a boundary** – 28, 130, 132, 158
- **Uses reaction rate coefficients specific to the Caudate Nucleus**

 \ldots + $\mathrm{k_{1\text{ Caud}}^{\mathrm{D}}}$ C_{Ldopa} - $\mathrm{k_{2}^{\mathrm{D}}}$ C131a- $\mathrm{k_{3\text{ Caud}}^{\mathrm{D}}}$ C131a- $\mathrm{k_{5}^{\mathrm{D}}}$ C131a $\frac{dC131a(t)}{dt} = D(C131a - C28a)/\Delta x + D(C131a - C130a)/\Delta x + D(C131a - C132a)/\Delta x + D(C131a - C158a)/\Delta x + ...$ $\frac{1}{\Delta x}(t) = D(C131a - C28a)/\Delta x + D(C131a - C130a)/\Delta x + D(C131a - C132a)/\Delta x + D(C131a - C158a)/\Delta x$ $= D(C131a - C28a)/\Delta x + D(C131a - C130a)/\Delta x + D(C131a - C132a)/\Delta x + D(C131a - C158a)/\Delta x +$

L-Dopa Two Hours After Administration Two Hours After Administration

- • **Highest concentration, .07 μM, found in the posterior occipital lobe**
	- Highest blood brain barrier transport constant
- • **Lowest concentration, .03 μM found in the caudate nucleus**
	- L-dopa consumed to make dopamine in the caudate nucleus and putamen

Methyldopa Two Hours After Administration Methyldopa Two Hours After Administration

- • **Even distribution throughout brain**
	- Between .007 μM and .009 μM of methyldopa everywhere
- \bullet **Methyldopa can be produced anywhere in the brain**

Dopamine and Metabolites Two Hours After *Administration Administration*

- • **Highest concentration, .14 μM, found in the caudate nucleus and putamen**
	- Highest L-dopa \rightarrow dopamine reaction constant
	- Twice highest concentration of L-dopa
- • **Lowest concentration, 0 μM found in outer regions**
	- No dopamine production

Transient Behavior of Dopa Administration in *Human Brain Human Brain*

- • **Scale:**
	- 1 second = 15 minutes
- • **Duration:**
	- 3 hours
- • **Concentrations outside of the caudate nucleus and putamen will comparatively drop with time as dopamine is produced and stored.**
- **Other regions of the brain will turn green and blue, meaning lower concentrations.**

Compare to PET Image Compare to PET Image

- • **Highest concentration, .20 μM, found in the caudate nucleus and putamen**
- \bullet **Recall: Maximum dopamine and metabolites were twice maximum L-dopa and an order of magnitude higher than methyldopa**

Conclusions Conclusions

- **The compartment models are limited to describe the Ldopa metabolic mechanism in human brain.**
- **The combination of one dimensional plasma and two dimensional brain model.**
- \bullet **Model generation, unstructured grid and generalized curvilinear transformation help us to solve this problem.**
- **The distributed system model of the brain produces results that are similar to data from PET images of the brain**

Future work:

- • **Discover the tissue properties and metabolic constant from PET images based on this rigorous model**
- **Combine the ventricular network and two or three dimensional brain model;**

References References

- Barrio J, Huang S, Phelps M. Biological Imaging and the Molecular Basis of Dopaminergic Diseases. Biochemical Pharmacology 1997;54:341-348
- Cooper, Jack R., Floyd E. Bloom, and Robert H. Roth. *The Biochemical Basis of Neuropharmacology.* 7th ed. New York, NY: Oxford University Press, 2002.
- Deep P, Gjedde A, Cumming P. On the accuracy of an [18F]FDOPA compartmental model:
evidence of vesicular storage of [18F]flourodopamine in vivo. Journal of Neuroscience
Methods 1997;76:157-165
- Gjedde A, Reith J, Dyve S, Leger G, Guttman M, Diksic M, Evans A, Kuwabara H. Dopa decarboxylase activity of the living human brain. Proc Natl Acad Sci USA 1991; 88:2721-5
- Ellegood J, Hanstock C, Beaulieu C. Trace Apparent Diffusion Coefficients of Metabolites in Human Brain using Diffusion Weighted Magnetic Resonance Spectroscopy. Magnetic Resonance in Medicine 2005; 53:1025-1032
- Kandel, Eric R., Schwartz, James H., Jessell, Thomas M. *Principles of Neural Science*. 3rd ed. New York, NY: Elsevier, 1991.
- Kumakura Y, Vernaleken I, Gründer G, Bartenstein P, Gjedde A, Cumming P. PET studies of
net blood-brain clearance of FDOPA to human brain: age dependant decline of
[18F]flourodopamine storage capacity. Joural of Cerebral B
- Meador-Woodruff J, Damask S, Watson S. Differential expression of autoreceptors in the ascending dopamine systems of the human brain. Proc. Natl. Acad. Sci USA 1994; 91:8297-8301
- Seeman P, Van Tol H. Dopamine receptor pharmacology. Trends in Pharmacological Sciences 1994; 15: 264-270
- Warner, Joseph J. *Atlas of Neuroanatomy: With Systems Organization and Case Correlations*. Boston, MA: Butterworh Heinmann, 2001.

Acknowledgements Acknowledgements

- **REU Supplement: NSF DMI-0328134**
- \bullet **Professor Andreas Linninger**
- •**Dr. Libin Zhang**
- •**Dr. Richard Penn M.D.**

Happy Birthday Marisa!