Vacuum Insulation Panels (VIP)

Varun Sood Advisor: Dr. Alan Feinerman

What are VIPs?

Insulating Structures

Resistant to Thermal Conduction

Relatively Thin with high R-value

Useful Application: Window Panels

Heat Transfer

- The main goal is to prevent heat transfer through the panel
- Temperature and Heat Flow
- Related to Kinetic Energy
- 3 main categories: Conduction, Convection and Radiation

Current Technology

Evacuated Glazing

Layers of glass with vertical support

Evacuate space and fill it with Argon

Use stainless steel to seal the panel

Compression causes Buckling

New Plan

Thermal Conductivity

• $k_{kev} = 0.04 \text{ W/m*K}$

• $k_{ss} = 16 \text{ W/m*K}$

- $k_{air} = 0.024 \text{ W/m*k}$
- $k_{Ar} = 0.017 \text{ W/m*K}$

Design

Cutting

CO₂ Laser

• Acrylic

Computer Operated

Finished Model

Testing

- Model was placed in a zip-lock bag
- The bag was sealed using double wire heat press
- Vacuum Pump was attached
- After observation, changes were made accordingly

Results

 Kevlar thread does not break and is able to keep the two panels apart

The pillars never touch the surface

 The zip-lock bag keeps getting sucked in the space between the two panels

Build a Wall

 The bag ripped causing the wall and pillars to break

 A second model with pillar support and thicker wall also failed the testing

The third model is currently being built

Future Work

Acknowledgements

 National Science Foundation and DoD ASSURE Program specifically the NSF EEC 0453432 grant

 Dr. Alan Feinerman and Tatjana Dankovic

Dr. Christos Takoudis